Период ятрохимии — многообещающее начало развития
Действительно, именно в XVI — XVII веках начали зарождаться непосредственные представления о химии как науке. Благодаря работам ученых того времени были получены некоторые органические вещества, изобретены простейшие устройства для перегонки и возгонки веществ, использовалась специальная химическая посуда для измельчения веществ, разделения продуктов природы на ингредиенты.
Основным направлением работы того времени стала медицина. Стремление получить необходимые лекарства привело к тому, что из растений выделялись эфирные масла и другие сырьевые компоненты. Так, Карлом Шееле были получены некоторые органические кислоты из растительного сырья:
- яблочная;
- лимонная;
- галловая;
- молочная;
- щавелевая.
На исследование растений и выделение этих кислот ученому потребовалось 16 лет (с 1769 г. по 1785 г.). Это стало началом развития, были заложены основы органической химии, которая непосредственно как раздел химии была определена и названа позднее (начало XVIII века).
В этот же период средневековья Г. Ф. Руэль выделил кристаллы мочевой кислоты из мочевины. Другими химиками была получена янтарная кислота из янтаря, винная кислота. В обиход входит метод сухой перегонки растительного и животного сырья, благодаря которому получают уксусную кислоту, диэтиловый эфир, древесный спирт.
Так было положено начало интенсивному развитию органической химической промышленности в будущем.
Химическая технология
Химическая технология является разделом химии, который изучает экономичные и экологически обоснованные методы переработки природных материалов для их потребления и использования в производстве.
Наука подразделяется на:
- Органическую химическую технологию, которая занимается переработкой горючих ископаемых, получением синтетических полимеров, лекарств и иных веществ.
- Неорганическую химическую технологию, которая занимается переработкой минерального сырья (кроме металлической руды), получением кислот, минеральных удобрений и щелочей.
В химической технологии происходит множество процессов (периодических или непрерывных). Они разделяются на основные группы:
- гидромеханические:
- химические;
- механические;
- массообменные;
- тепловые.
Простые и сложные вещества. Валентность
Вещества бывают простые и сложные. Если молекула состоит из атомов одного химического элемента, — это простое вещество:
Если в состав вещества входят атомы только одного химического элемента — это простое вещество. Причём некоторые химические элементы образуют несколько простых веществ. Так, химический элемент кислород образует простое вещество «кислород» О2 и простое вещество «озон» О3*.
А химический элемент углерод образует четыре простых вещества, причём ни одно из них не называется «углерод». Эти вещества отличаются пространственным расположением атомов:
Алмаз — атомы углерода находятся в вершинах воображаемых тетраэдров;
Графит — атомы углерода находятся в одной плоскости;
Карбин — атомы углерода образуют «нити».
В четвертой модификации «углерода» — фуллерене — атомы углерода образуют сферу, т. е. молекулы фуллерена напоминают мячик.
Существование элемента в виде нескольких простых веществ называется аллотропией. Алмаз, графит, карбин, фуллерен — аллотропные модификации элемента «углерод», а кислород и озон — аллотропные модификации элемента «кислород».
Таким образом, не следует путать эти понятия: «химический элемент» и «простое вещество», а также «молекула» и «атом».
Очень часто в письменных записях слова «молекула» или «атом» заменяют соответствующими символами, но не всегда правильно. Так, нельзя писать: «В состав воды входит Н2», так как речь здесь идёт о химическом элементе водороде — Н. Нужно писать: «В состав воды входит (Н)». Аналогично, правильной будет запись: «При действии металла на раствор кислоты выделится Н2», т. е. вещество водород, молекула которого двухатомна.
Молекулы сложных веществ состоят из атомов разных химических элементов:
Как известно, в состав сложных веществ входят атомы разных химических элементов. Эти атомы соединяются между собой химическими связями: ковалентными, ионными, металлическими.
Способность атома образовывать определённое число ковалентных химических связей называется валентностью. (Подробнее см. урок 4 «Химическая связь».) Правильнее всего определять валентность по графическим или структурным формулам:
В таких формулах одна чёрточка обозначает одну ковалентную связь, т. е. «одну валентность». На практике чаще всего валентность определяют по молекулярной формуле, хотя здесь правильнее говорить о степени окисления элемента (см. урок 7). Иногда результат определения степени окисления соответствует реальному значению валентности, но бывают и неодинаковые результаты.
Задание 1.1. Определите «валентность» (степени окисления) атомов кальция и углерода по формуле СаС2. Совпадает ли полученный результат с реальным значением валентности?
В устойчивой молекуле не может быть «свободных», «лишних» валентностей! Поэтому для двухэлементной молекулы число химических связей (валентностей) атомов одного элемента равно общему числу химических связей атомов другого элемента.
Валентность атомов некоторых химических элементов постоянна (табл. 2).
Для других атомов валентность можно определить (вычислить) из химической формулы вещества.
При этом следует учитывать изложенное выше правило о химической связи.
Сделаем практические выводы.
1. Если один из атомов в молекуле одновалентен, то валентность второго атома равна числу атомов первого элемента (см. на индекс!):
2. Если число атомов в молекуле одинаково, то валентность первого атома равна валентности второго атома:
3. Если у одного из атомов индекс отсутствует, то его валентность равна произведению валентности второго атома на его индекс:
4. В остальных случаях ставьте валентности «крест-накрест», т. е. валентность первого атома равна числу атомов второго элемента и наоборот:
Задание 1.2. Определите валентности элементов в соединениях:
Вначале укажите валентности атомов, у которых она постоянна! Аналогично определяется валентность атомных групп (ОН), (РО4), (SО4) и так далее.
Задание 1.3. Определите валентности атомных групп (в формулах выделены курсивом):
Обратите внимание! Одинаковые группы атомов (OH), (РО4), (SO4) имеют одинаковые валентности во всех соединениях. Зная валентности атома или группы атомов можно составить формулу соединения
Для этого пользуются правилами:
Зная валентности атома или группы атомов можно составить формулу соединения. Для этого пользуются правилами:
Если валентности одинаковы, то и число атомов одинаково, т. е. индексы не ставим:
Если валентности кратны (одно число делится на другое), то число атомов элемента с меньшей валентностью определяем делением:
В остальных случаях индексы определяют «крест-накрест»:
Задание 1.4. Составьте химические формулы соединений:
Развитие химии в средние века
К представленной эпохе христианский мир еще мало знал о тех течениях и прогрессивных идеях, которые зарождались на Востоке. Однако религиозные крестовые походы в каком-то смысле помогли соприкоснуться двум таким разным мирам и совершить культурную ассимиляцию. На рубеже XII-XIII веков европейская наука принимает на себя лидирующие позиции. В данное время идет активное исследование химических веществ. История предмета «химия» в средневековый период связано с такими личностями, как Роджер Бэкон, Альберт Великий и Раймонд Луллий.
Средневековье – апогей религиозного мышления. Вся жизнь человека была пропитана верой, такой отпечаток не мог не наложиться на химическую науку. Примечателен тот факт, что открывать новые вещества, узнавать их возможности, рассматривать способы применения стали в храмах и монастырях. Так, одним из первых весомых открытий, известных и по сей день, стал нашатырный спирт. Как и в любом предыдущем столетии, общество мало волновала данная научная отрасль, пока не был открыт в середине XIII века порох. Открытие его присваивают Роджеру Бэкону. Данное вещество произвело в своем роде революцию в сознании человека, а впоследствии и в военной отрасли.
Шестнадцатый век практически полностью был посвящен поискам новых элементов, которые можно было бы использовать в медицине. В данное время формируется множество идей о панацеях, веществах, которые способны продлить жизнь человека.
Развитие химии, как науки
Исторические этапы прогресса учения о атомах и молекулах:
- Сезон «зарождения» (III столетие нашей эры). Характеризуется слабым, относительно независимым друг от друга улучшением. Изучала античная натурфилософия.
- Столетья алхимии (III – XVII вв.). Попытки изобретения философского камня, транс мутировавшего металлы. Состоит из александрийского, арабского, египетского подпериода.
- «Объединение» (XVII – XVIII века). Конструирования целостной науки — Химии. Завершился революционными открытиями.
- Отрытие «Количественных законов» (1769 – 1860 года). Характерно выражения атомно-моллекулярной теории.
- Золотой век (1860 – 1899). Стремительное формирование в научном плане: складывание периодической системы, появление химической термодинамики, кинетики (в аспектах учения).
- Наши времена. Полное изучение органических соединений, зарождение «Физхимии».
Атомно-молекулярное учение. Мельчайшие частицы
Как и каждая наука, химия имеет свои термины и понятия, которые изучаются на протяжении всего курса. Эти термины для вас будут не новыми, вы с ними знакомились на уроках физики и природоведения. А речь пойдёт об атомах, молекулах, химических элементах и веществах. Эти понятия являются основой атомно-молекулярного учения.
Рассмотрим подробно каждое понятие.
Атом
Наверняка вы в учебнике или кабинете химии видели периодическую систему химических элементов (ПСХЭ). Она имеет разный вид и структуру, с которой вы позже подробно познакомитесь. Классический вид периодической системы химических элементов изображён на рисунке.
()
С уроков природоведения вам известно, что атомы это кирпичики мироздания.
Атом – мельчайшая частица химического элемента, которая отвечает за его свойства и химически неделима.
На данный момент известно 126 видов атомов – химических элементов. Какая связь между химическим элементом и атомом? Химический элемент состоит из атомов определённого вида. В чём состоит отличие этих понятий. Почему алхимики не могли найти философский камень? Почему железо или медь не превращаются в золото? Чтобы ответить на эти вопросы, необходимо рассмотреть строение атома.
Абсолютно каждый атом имеет положительно заряженное ядро и, вращающиеся вокруг него, отрицательные электроны.
(, перевод администрации сайта 100urokov.ru)
Самое тяжёлое в атоме – это ядро, которое состоит с протонов (имеют заряд +) и нейтронов (заряд 0).
Атом не имеет никакого заряда, иными словами нейтрален.
Число протонов = число электронов
Чтобы узнать количество частиц, необходимо определить порядковый номер элемента в .
Например, если в состав атома входит 10 электронов и 10 протонов, посмотрев в периодическую систему, увидим, что данный набор частиц отвечает химическому элементу – Неон. Химический элемент Золото имеет 79 протонов и 79 электронов. Состав атомов, а точнее, количество протонов, не изменяется в ходе химических реакций. Именно по этой причине, алхимики не смогли найти рецепт философского камня.
Атомы (подобно буквам, которые соединяются в слоги, а потом в слова) соединяются в молекулы.
Молекула
Молекула – наименьшая частица вещества
Как образуются молекулы? Снова проведём аналогию с буквами. Чтобы получилось читаемое и со смыслом слово, необходима определённая комбинация букв и чёткие правила. Также происходит и при образовании молекулы. Атомы соединяются в молекулу с помощью химических связей. Свойства молекул зависят от того, атомы каких элементов входят в их состав, а также каким образом они соединены между собой.
Рассмотрим на примере молекул веществ, которые образованные атомами кислорода, это кислород и озон. Обе эти молекулы образованы атомами химического элемента Кислород, но в состав озона, химическая формула которого О3, входит 3 атома Кислорода, а в молекулу кислорода, формула вещества О2 – два атома химического элемента Кислород.
()
Данное явление называется аллотропией. Это явление существования простых веществ, образованных одинаковым химическим элементом, но различным по свойствам и строению.
Рекордсменом по образованию аллотропных форм является углерод, который существует в виде алмаза, графита, карбина, фуллеренов, углеродных нанотрубок.
Как видно из определения, атомы и молекулы – это частицы, но в чём их разница? Снова проведём аналогию с буквами и словами. Буквы – это атомы, слова – это молекулы. Буквы не могут состоять из слов, так же как и атомы не могут состоять из молекул.
()
Молекула сернистого газа SO2 состоит из одного атома Серы и двух атомов Кислорода. Молекула аммиака состоит из одного атома Азота и трёх атомов Водорода и т. д.
Таким образом, мы видим, что все вещества состоят из атомов химических элементов. Живая и неживая природа – это также комбинация химических элементов.
Ионы
Что происходит с атомом, если он присоединяет или отдаёт электроны? Он становится заряженной частицей.
()
Ионы – частицы, которые положительно или отрицательно заряжены.
Обобщив все вышесказанное, выделим основные постулаты атомно-молекулярного учения, которое является фундаментом в химии, физике и естествознании:
- Вещества состоят из молекул;
- Атомы являются частью молекулы;
- Атомам и молекулам характерно самопроизвольное движение;
- Во время химических реакций происходит изменение состава молекулы и образуются новые вещества.
Зарождение алхимии
Про Великого Александра известно много, в частности то, что у него имелась самая большая библиотека древнего мира. Именно поэтому основной научный центр ко второму тысячелетию до нашей эры формируется в Александрии – есть мнение, что история органической химии началась именно отсюда. Именно в этом городе зарождается удивительная человеческая деятельность – алхимия.
Она является следующим этапом в истории химии как науки. На данной ступени были всецело соединены знания древних греков и теоретические сведения Платона, что, собственно, и отразилось в алхимии. Для алхимиков свойственен был особый интерес к металлам. Для данных веществ даже было разработано собственное структурирование на основе небесных объектов. Так, серебро в визуальном плане изображали как Луну, железо – в форме Марса. Такова была история развития органической химии.
В результате того, что культура античного времени была всецело погружена в религиозное мышление, и у алхимии существовал свой божественный покровитель – Тот. В это время появляются первые произведения, освещающие научные поиски и место человека в мире. История развития химии начинает обогащаться событиями. Отшельник-исследователь Болос родом из полиса Мендеса написал трактат «Физика и мистика», который стал результатом его долгих скитаний и отразил в себе описание известных металлов и драгоценных камней, их свойства и практическую значимость для человека.
Известный многим алхимик Зосим Панополит в своих многочисленных трудах рассматривал искусственные методики получения золота из металлов. Именно с этого момента история происхождения химии стала носить массовый характер. Об алхимии заговорили почти все, ею стали интересоваться различные слои населения, и всех, конечно же, привлекала мысль добычи золота и вечной жизни. История химии, кратко представленная в нашем материале, – это то, что в те времена знали все ученые, которые хотели чего-то добиться.
1.4. Классический этап развития химии как науки.
Становление собственно химии
охватывает три столетия — с
XVI по XVIII в. Слепое экспериментирование
сменяется изучением законов превращения
веществ для практического их использования.
Первой из химических отраслей стала я
т р о -химия, основанная в начале XVI в.
швейцарцем Т. Парацельсом. Ятрохимики
(в современных терминах) считали, что
болезни возникают из-за нарушения
течения химических процессов в организме
и недостатка (или избытка) в нем тех или
иных веществ, и предлагали соответствующие
способы лечения. В этот же период
развивается техническая химия.
С именем ирландского ученого Р.
Бойля связывается полное освобождение
химии от алхимии и ятрохимии. Он отбросил
частичку <ал> в самом термине, ввел
в пг’чктику определение химического
элемента как составной части вещества,
которую нельзя разложить на более
простые части; положил начало химическому
анализу, химии газов.
На рубеже XVII и XVIII вв. появилась
первая общая химическая теория -теория
флогистона (от греч. phlogiston — воспламеняемый,
горючий), разработанная немецким химиком
и врачом Э.Г. Шталем и основанная на том
положении, что, чем больше флогистона
содержит данное тело, тем более оно
способно к горению. Теория Шталя,
созданная для объяснения явлений
горения, окисления и восстановления
металлов, смогла ч стать основой для
объяснения большинства наблюдаемых в
то время химических явлений.
В середине XVIII в. теория флогистона
стала подвергаться сомнению. М.В.
Ломоносов сформулировал закон сохранения
массы вещества в химических процессах
и доказал его экспериментально. Он также
выдвинул идею, согласно которой при
нагревании металл соединяется, как он
говорил, с частичками воздуха. Французский
химик А. Лавуазье, изучая горение и обжиг
металлов, выяснил роль кислорода в этих
явлениях, разрушив тем самым теорию
флогистона. Он также внес ясность в
понятия химического элемента, простого
и сложного вещества. Независимо от
Ломоносова он экспериментально установил
закон сохранения массы в химических
реакциях и убедил в нем своих
современников-химиков.
В конце XVII — середине XIX в. были
открыты стехиомет-рические законы химии
о количественных соотношениях между
массами веществ, вступающих в химическую
реакцию, что придало химии рациональный
характер и способствовало подведению
экспериментального фундамента под
атомно-мо-лекулярную гипотезу, а также
позволило сформулировать правила
составления химических формул и
уравнений. Основными стехиометрическими
законами считаются законы Авогадро о
пропорциональности между плотностями
газов или паров и молекулярными массами,
объемных отношений Ж.Л. Гей-Люссака,
кратных отношений Дж. Дальтона,
эквивалентов И.В. Рихтера и У.Х. Волластона
и др. Все эти законы были установлены
экспериментально.
Использование количественных
измерений, совершенствование химического
эксперимента привели к окончательному
утверждению атомно-молекулярных
представлений о строении вещества. Эти
представления утвердились в 1860-х гг.,
когда A.M. Бутлеров создал теорию строения
химических соединений, показав, что не
только состав, но и структура определяют
свойства веществ, а Д.И. Менделеев открыл
периодический закон.
Алхимия
Секретность и таинство подарили химии мистический ореол. Со временем, когда наука всё-таки смогла распространиться по разным странам, жители Европы переняли от арабов название «алхимия». Они позаимствовали этот термин из среднегреческого языка, где он обозначал «флюид».
Алхимия воспринималась как сочетание искусства и химии, но, на деле, её корни лежат в эзотерической сфере. Так или иначе, изначально наука использовалась в восточных странах для получения ртути или фосфора, а со временем и щелочей. Примерно со времен Средневековья к алхимии добавилась мистическая составляющая, основанная на тонкостях философии того периода.
Большинству людей алхимия известна по попыткам «трансмутации», призванным превращать какие-либо вещества в золото. Ещё с античных времен этот материал стал всеобщим эквивалентом товаров, а получить его было крайне трудно. Подобные попытки сохранялись до самого четырнадцатого века.
Хотя получить золото из ничего так и не удалось, труды алхимиков позволили создать другие материалы, а также освоить многочисленные методы обработки. Всё это стало значительным вкладом в постепенно формировавшуюся науку химию.
Современный этап развития химии
На сегодняшний день знания о химических элементах и их структуре помогают объяснить и спрогнозировать свойства молекул и натуральных веществ, представляющих собой совокупность большого числа движущихся частиц. Технический уровень позволяет изучать различные превращения молекул. В последние годы появилась возможность с помощью компьютерного моделирования на основании расчетов квантовой механики определять структуру химического соединения вещества, механизмы соединения и способы движения частиц, которые трудно поддаются экспериментальному фиксированию.
Необходимо упомянуть о том, что сегодня главная цель, которая стоит перед химической наукой, – это исследование процесса: пройдет данная химическая реакция или нет, а если пройдет, то какой будет результат и каковы оптимальные условия, чтобы коэффициент полезного действия проводимой реакции был как можно больше, а скорость процесса приемлемой? Изучения скорости протекания реакции очень важны как для выявления оптимальных условий совершения реакции, так и для того, чтобы заранее, до проведения реакции, приблизительно знать результат.
Так зачем же нужна химия? На сегодняшний день без базовых знаний данной научной дисциплины не обойтись. Знание общих принципов и химических законов необходимы ученому, работающему в любой отрасли химического знания, будь то изучение процессов, осуществляющихся в недрах Земли, производство полимерных материалов или организм человека.
Типы химических связей в органических веществах
Для любых соединений характерны электронностатические взаимодействия внутри молекул, которые в органике выражаются в наличии ковалентных полярных и ковалентных неполярных связей. В металлорганических соединениях возможно образование слабого ионного взаимодействия.
Ковалентные неполярные связи возникают между С-С взаимодействием во всех органических молекулах. Ковалентное полярное взаимодействие характерно для разных атомов-неметаллов в молекуле. Например, С-Hal, C-H, C-O, C-N, C-P, C-S. Это все связи в органической химии, которые существуют для образования соединений.
Неорганическая
Неорганическая химия изучает такие вещества и газы в состав которых не входит углерод.
Раздел науки изучает металлы и неметаллы, оксиды и соли, гидроксиды и кислоты, нитриды и гидриды, а также технологии применения в производстве, защите и использовании сельскохозяйственных культур и скота.
Химическая технология
Инженеры-химики исследуют и разрабатывают новые материалы или процессы, связанные с химическими реакциями. Химическая инженерия сочетает в себе основы науки с инженерными и экономическими концепциями для решения технологических проблем.
Химическое машиностроение представляет базовую отрасль экономики как химическая и нефтехимическая промышленность и делится на две основные группы: промышленное применение и разработка новых продуктов.
Отрасли промышленности требуют от инженеров-химиков разработки новых способов сделать производство своей продукции более легким и экономически эффективным. Ученые-химики участвуют в проектировании и эксплуатации перерабатывающих предприятий, разрабатывают процедуры безопасности при обращении с опасными материалами и контролируют производство почти каждого продукта, который мы используем. Ученые-химики работают над разработкой новых продуктов и процессов в любой области-от фармацевтики до топлива и компьютерных компонентов.
Геохимия
Геохимики объединяют химию и геологию для изучения состава и взаимодействия между веществами, находящимися в земле.
Геохимики могут тратить больше времени на полевые исследования, чем другие ученые. Многие работают в службах по охране окружающей среды, определяя, как горнодобывающие операции и отходы могут повлиять на качество воды и окружающую среду. Они могут направляться в отдаленные заброшенные шахты для сбора проб и проведения грубых полевых оценок, а затем следовать за потоком через его водосбор, чтобы оценить, как загрязняющие вещества перемещаются через систему. Ученые раздела нефтяной геологии занимаются вопросами химического изучения состава нефти и связанных с ней природных образований. Они работают в нефтегазовых компаниях, чтобы помочь найти новые запасы энергии. Ученые этой науки также могут работать на трубопроводах и нефтяных вышках, чтобы предотвратить химические реакции, которые могут вызвать взрывы или разливы.
Судебная химия
Судебно-медицинские химики собирают и анализируют вещественные доказательства, оставленные на месте происшествия, чтобы помочь установить личности причастных лиц, а также ответить на другие жизненно важные вопросы, касающиеся того, как и почему было совершено событие. Судебно-медицинские химики используют широкий спектр методов анализа, таких как хроматография, спектрометрия и спектроскопия.
Например, химики разработали систему, которая выходит за рамки идентификации отпечатков пальцев. Этот метод может захватывать молекулы, содержащиеся в отпечатке пальца, включая липиды, белки, генетический материал или даже следовые количества взрывчатых веществ, которые могут быть дополнительно проанализированы. Новый инструмент по существу снимает тайну с определения химического состава отпечатков пальцев на местах событий.
Агрохимия
Агрохимия как неорганическая наука связана с веществами и химическими реакциями, которые участвуют в производстве, защите и использовании сельскохозяйственных культур и скота. Это междисциплинарная область которая опирается на связи со многими другими науками. Сельскохозяйственные химики необходимы в сельском хозяйстве, агентствах по охране окружающей среды, управлениях по контролю за продуктами питания и лекарствами или в частном секторе.
Агрохимия как наука разрабатывает удобрения, инсектициды и гербициды, необходимые для крупномасштабного растениеводства. Ученые занимающиеся этой наукой следят за тем, как используются продукты и как они влияют на окружающую среду. Они также разрабатывают пищевые добавки для повышения продуктивности мясных и молочных стад.
Сельскохозяйственная биотехнология является быстро растущим направлением в науке. Генетически манипулирующие культуры, чтобы быть устойчивыми к гербицидам, используемым для борьбы с сорняками на полях, требуют детального понимания как самих растений, так и химических веществ на молекулярном уровне. Биохимия как наука должна понимать генетику и потребности бизнеса в разработке культур, которые легче транспортировать или которые имеют более длительный срок хранения.