Строение, развитие, а также деление мужских и женских половых клеток

Строение, развитие, а также деление мужских и женских половых клеток

Строение, развитие, а также деление мужских и женских половых клеток
СОДЕРЖАНИЕ
0
0
19 мая 2020

Энциклопедический словарьюного биолога

Жгутики и реснички

Жгутики и реснички — специализированные
органоиды движения клеток. Различают два
типа жгутиков: одни — в клетках животных и
низших растений, кроме цианобактерий, а
другие — у бактерий. Реснички встречаются
только в клетках животных.

Жгутики бактерий — это тонкие (15—
20 нм), полые в середине нити, построенные из
одного белка — флагеллина. Нити волнообразно
изогнуты, имеют постоянную форму и сами не
способны двигаться. В мембране бактериальной
клетки находится базальное тельце жгутика,
имеющее сложный белковый состав и
строение. Жгутик соединяется с базальным
тельцем с помощью крюка. Он совершает вращательные движения (истинное вращение).

Схема строения бактериального
жгутика.

Продольный срез реснички:
1 — мембрана; 2 — спаренные
микротрубочки; 3 —
центральная пара микротрубочек; 4 —
спица; 5 — мембрана
реснички; 6 — переходная зона; 7—
плотная пластинка; 8 — ба-
зальное тельце; 9 —
исчерченный корешок; 10 — сателлит
базального тельца. Справа —
поперечные срезы реснички
на разных уровнях: а —
изгибающаяся часть; б —
неподвижное основание; в —
переходная зона; г — базальное
тельце.

Поперечный срез реснички: 1 —
мостики между
периферическими трубочками; 2 —
спаренные трубочки; 3 —
центральная трубочка; 4 — спица;
5 — центральная капсула; 6 —
головка спицы; 7 —
мембрана; 8 — внутренний динеиновый выступ; 9 — внешний динеиновый

Вращающим элементом служит базальное тельце,
движущееся внутри бактериальной мембраны,
подобно ротору в электромоторе. Интересно,
что и источник энергии для вращения
жгутика не энергия химических веществ (типа АТФ),
а разность электрохимических потенциалов на
мембране бактериальной клетки.

Жгутики и реснички животных и растений
гораздо крупнее. Они имеют диаметр около
250 нм и достигают в длину нескольких
миллиметров. В отличие от бактериальных эти
жгутики покрыты мембраной и обладают
собственной подвижностью.

Траектория движения
реснички (а) и жгутика (б).

Продольный срез ресничек
жабры мидии: 1 —
центральная пара микротрубочек аксонемы; 2 — периферические
пары; 3 — плотная пластинка;
4 — шейка базального тельца;
5 — базальное тельце; 6 —
исчерченные корешки.
Электронная микрофотография.
Увеличение в 30 тыс. раз.

Строение и принцип работы жгутиков и
ресничек совершенно одинаковы. Различия
между ними лишь в количестве: обычно на одну
клетку приходится один или несколько
жгутиков, а ресничек до нескольких тысяч.

Под мембраной у жгутиков (ресничек)
располагается стержневая структура — аксоне-
ма. Она состоит из 9 спаренных
микротрубочек, расположенных по окружности, и 2
одиночных микротрубочек в центре. Централь-
ные и периферические микротрубочки
соединены между собой системой связок. В состав
периферических микротрубочек входит белок ту-
булин и специфический для жгутиков белок —
динеин. Динеин использует энергию АТФ (см.
Аденозинтрифосфорная кислота (АТФ),
расщепляя ее до АДФ (аденозиндифосфорной
кислоты), и, взаимодействуя с тубулином,
превращает энергию в механическую работу по
перемещению спаренных микротрубочек
относительно соседних — скольжению. Две
центральные микротрубочки и система связок
превращают скольжение отдельных
микротрубочек внутри аксонемы в изгибание всей ак-
сонемы, а это и приводит в движение жгутик
(ресничку). Движение состоит либо из
псевдовращения (такое движение мы производим,
например, делая вращательные движения
рукой) — так чаще всего бьются жгутики; либо
из возвратно-поступательных колебаний в
одной плоскости, типичных для ресничек.

В основании жгутиков (ресничек) лежат ба-
зальные тельца, но в отличие от
бактериальных они не связаны с движением, а служат
для роста аксонемы и закрепления жгутика
(реснички) в клетке. Часто от базальных
телец в глубь цитоплазмы отходят
дополнительные заякоривающие структуры —
исчерченные корешки.

Жгутики и реснички обеспечивают движение
свободноживущих клеток. Реснички создают
поток жидкости вдоль поверхности
неподвижных клеток (например, в дыхательных путях
согласованное биение миллионов ресничек
обеспечивает удаление из легких пылевых
частиц).

У некоторых животных (например,
млекопитающих) имеются наряду с подвижными
ресничками еще и неподвижные —
чувствительные реснички. Последние не имеют двух
центральных микротрубочек и иногда вообще
лишены аксонемы, но всегда имеют в основании
базальное тельце. Таковы палочки сетчатки
глаза, реснички обонятельных луковиц,
реснички во внутреннем ухе (орган равновесия).

Органеллы

Пластиды

Основная статья: Пластиды

Пластиды — органеллы растительной клетки, состоящие из белковой стромы, окружённой двумя липопротеидными мембранами. Внутренняя из них образует внутрь выросты (тилакоиды, или ламеллы).

Пластиды, как и митохондрии, являются самовоспроизводящимися органеллами и имеют собственный геном — пластом, а также рибосомы.

У высших растений все пластиды происходят от общего предшественника — пропластид, которые развиваются из двумембранных инициальных частиц.

Пластиды присущи исключительно растениям. Различают три основных типа пластид:

  • Лейкопласты. Эти пластиды не содержат никаких пигментов, внутренняя мембранная система, хотя и присутствует, но развита слабо. Разделяют амилопласты, запасающие крахмал, протеинопласты, содержащие белки, элайопласты (или олеопласты), запасающие жиры. Этиопласты — это бесцветные пластиды растений, которые выращивали без освещения. При наличии света они легко превращаются в хлоропласты.
  • Хромопласты — пластиды жёлто-оранжевого цвета, обусловленного наличием в них пигментов каротиноидов: каротина, ксантофилла, лютеина, зеаксантина и др. Образуются из хлоропластов при разрушении в них хлорофилла и внутренних мембран. Кроме того, хромопласты мельче хлоропластов по размерам. Каротиноиды присутствуют в хромопластах в виде кристаллов или растворёнными в каплях жира (такие капли называют пластоглобулами). Биологическая роль хромопластов до сих пор неясна.

Ультраструктура хлоропласта: 1. наружная мембрана 2. межмембранное пространство 3. внутренняя мембрана (1+2+3: оболочка) 4. строма (жидкость) 5. тилакоид с просветом (люменом) внутри 6. мембрана тилакоида 7. грана (стопка тилакоидов) 8. тилакоид (ламела) 9. зерно крахмала 10. рибосома 11. пластидная ДНК 12. пластоглобула (капля жира)

Хлоропласты — пластиды в виде двояковыпуклой линзы, окружённые оболочкой из двух липопротеидных мембран. Внутренняя из них образует длинные выросты в белковую строму — тилакоиды стромы и более мелкие, расположенные стопками тилакоиды гран, соединённые между собой тилакоидами стромы. С белковым слоем мембран тилакоидов связаны пигменты: хлорофилл и каротиноиды. В хлоропластах осуществляется фотосинтез. Первичный крахмал, синтезированный хлоропластами, откладывается в строме между тилакоидами.

Гигантские хлоропласты водорослей, присутствующие в клетке в единственном числе, называются хроматофорами. Их форма может быть очень разнообразной.

Вакуоли

Основная статья: Вакуоль

Вакуоль — полость в клетке, заполненная клеточным соком и окружённая мембраной — тонопластом. Вещества, содержащиеся в клеточном соке, определяют величину осмотического давления и тургор клеточной оболочки.

READ  Хатико: порода, как называется собака, которая снималась в фильме

Вакуоли образуются из провакуолей — небольших мембранных пузырьков, отшнуровывающихся от ЭПР и комплекса Гольджи. Потом пузырьки сливаются, образуя более крупные вакуоли. Только у старых вакуолей все вакуоли могут сливаться в одну гигантскую центральную вакуоль, обычно же клетка, помимо центральной вакуоли, содержит мелкие вакуоли, наполненные запасными веществами и продуктами обмена.

Вакуоли выполняют в клетке следующие основные функции:

  • создание тургора;
  • запасание необходимых веществ;
  • отложение веществ, вредных для клетки;
  • ферментативное расщепление органических соединений (это сближает вакуоли с лизосомами).

Пластиды

Пластиды (от др.-греч. Πλαστόс — вылепленный) — полуавтономные органеллы высших растений, водорослей и некоторых фотосинтезирующих простейших. Пластиды имеют от двух до четырёх мембран, собственный геном и белоксинтезирующий аппарат.

Согласно симбиогенетической теории пластиды, как и митохондрии, произошли в результате «захвата» древней цианобактерии предшественником эукариотической «хозяйской» клетки. При этом внешняя мембрана пластид соответствует плазматической мембране хозяйской клетки, межмембранное пространство — внешней среде, внутренняя мембрана пластид — мембране цианобактерии, а строма пластид — цитоплазме цианобактерии. Наличие трёх (эвгленовые и динофлагелляты) или четырёх (золотистые, бурые, жёлто-зелёные, диатомовые водоросли) мембран считается результатом двух- и трёхкратного эндосимбиоза соответственно.

Хлоропласты (от греч. Χλωρός — «зелёный») — зелёные пластиды, которые встречаются в клетках фотосинтезирующих эукариот. С их помощью происходит фотосинтез. Хлоропласты содержат хлорофилл.

В одной клетке листа может находиться 15—20 и более хлоропластов, а у некоторых водорослей — лишь 1 -2 гигантских хлоропласта (хроматофора) различной формы.

Хлоропласты ограничены двумя мембранами — наружной и внутренней. Наружная мембрана отграничивает жидкую внутреннюю гомогенную среду хлоропласта — строму (матрикс) В строме содержатся белки, липиды, ДНК (кольцевая молекула) , РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна), а также ферменты, участвующие в фиксации углекислого газа.

Внутренняя мембрана хлоропласта образует впячивания внутрь стромы — тилакоиды, которые имеют форму уплощенных мешочков (цистерн) . Несколько таких тилакоидов, лежащих друг над другом, образуют грану, и в этом случае они называются тилакоидами граны. Именно в мембранах тилакоидов локализованы светочувствительные пигменты, а также переносчики электронов и протонов, которые участвуют в поглощении и преобразовании энергии света.

Рисунок 10. Хлоропласты.

Zachet_Abramova

В основании и жгутика, и рес­нички лежит базальное тельце, которое укрепляет их в цитоплазме клетки. Меха­низм движения ресничек и жгутиков оди­наков, в его основе лежит скольжение микротрубочек друг относительно друга. Сходство этих органоидов движения за­ключается также и в том, что на их работу расходуется энергия АТФ.

Различаются реснички и жгутики раз­мерами. Жгутики в несколько раз длин­нее ресничек.

Кроме того, реснички, изги­баясь волнообразно, обеспечивают клетке плавное, медленное передвижение. Жгу­тик же осуществляет вращательные дви­жения, что позволяет клетке активно пе­ремещаться.

Вопрос 4.

Назовите примеры клеточных включений.

Временные образования в клетке на­зывают клеточными включениями. К ним относятся гранулы крахмала, гли­когена или белка, мелкие капли жира, кристаллы солей.

На этой странице искали :

  • каковы функции клеточного центра
  • функции клеточного центра
  • клеточный центр функции
  • каковы функции центриолей в клетке
  • клеточный центр выполняет функции

«агрузка…

Центриоли (от лат. centrum – срединная точка, центр)представляют два перпендикулярно расположенных друг к другу цилиндра, стенки которых образованы микротрубочками и соединены системой связок.

Конец одного цилиндра (дочерняя центриоль) направлен к поверхности другого (материнская центриоль). Совокупность сближенных между собой материнской и дочерней центриолей называетя диплосомой.

Впервые центриоли были обнаружены и описаны в 1875 В. Флемингом. В интерфазных клетках центриоли часто располагаются возле комплекса Гольджи и ядра.

Ультрамикроскопическое строение центриолей было изучено только с помощью электронного микроскопа. Стенку центриолей составляют расположенные по окружности 9 триплетов микротрубочек, образующих полый цилиндр.

Системы микротрубочек центриоли можно описать формулой (9X3) + 0, подчеркивая отсутствие микротрубочек в центральной части. Ширина центриоли составляет около 0,2 мкм, длина — 0,3-0,5 мкм (однако, есть центриоли, достигающие в длину нескольких микрометров). Кроме микротрубочек в состав центриоли входят дополнительные структуры — «ручки», соединяющие триплеты.

Центриолярный цикл. Строение и активность центриолей меняются в зависимости от периода клеточного цикла.

Это позволяет говорить о центриолярном цикле. В начале периода G1 от поверхности материнской центриоли начинается рост микротрубочек, которые растут и заполняют цитоплазму. По мере роста микротрубочки теряют связь с областью центриолей и могут находиться в цитоплазме длительное время. В периоде S или G2 происходит удвоение числа центриолей.

Этот процесс заключается в том, что центриоли в диплосоме расходятся и около каждой из них происходит закладка процентриолей. В начале вблизи и перпендикулярно исходной центриоли закладываются девять одиночных микротрубочек. Затем они преобразуются в девять дуплетов, а потом в девять триплетов микротрубочек новых центриолей. Этот способ увеличения числа центриолей был назван дупликацией. Следует отметить, что удвоение числа центриолей не связано с их делением, почкованием или фрагментацией, а происходит путем образования процентриолей.

Таким образом, в результате дупликации в клетке содержатся четыре попарно связанные центриоли. В этом периоде материнская центриоль продолжает играть роль центра образования цитоплазматических микротрубочек.

Строение

Органелла была обнаружена в 1875 году немецким биологом Вальтером Флеммингом. Центросома чаще всего располагается рядом с ядром или комплексом Гольджи. Размер органеллы не превышает 0,5 мкм в длину и 0,2 мкм в диаметре. Клеточный центр присутствует только в животной клетке. В клетках растений, грибов, некоторых простейших центросома не наблюдается.

Рис. 1. Строение центриолей.

Клеточный центр состоит из двух центриолей, расположенных друг к другу под прямым углом. Каждая центриоль – белковая структура, образованная девятью триплетами микротрубочек. Триплет означает три трубочки в ряд, т.е. всего в центриоли 27 микротрубочек. Триплеты соединены белковыми нитями по кругу, образуя цилиндр. В центре цилиндра располагается белковый стержень, к которому прикреплены все триплеты. На поперечном сечении центриоль напоминает цветок, лепестки которого направлены в одну сторону.

Рис. 2. Центросома с микротрубочками.

Подробное описание компонентов центросомы описано в таблице «Строение и функции клеточного центра».

Компоненты

Особенности строения

Функции

Центриоли

– Микротрубочки;

– белковые нити;

– белковый стержень (ось)

Производят микротрубочки с помощью белков, т.е. являются ЦОМТ – центром организации микротрубочек. В S-фазе интерфазы удваиваются путём самосборки, расходятся к полюсам клетки и выстраивают веретено деления

Сателлиты – придатки материнской центриоли

– Ножки, соединённые с центриолью;

– головка или фокус схождения микротрубочек (ФСМТ)

Производят микротрубочки, собирают и разбирают веретено деления

Микротрубочки

Белок тубулин. Имеют минус-концы, связанные с центриолью и плюс-концы, расходящиеся к периферии клетки

Прикрепляются с двух сторон (от каждой пары центриолей) во время митоза к центромерам хромосом, формируя веретено деления. Удерживая части хромосом, микротрубочки начинают разбираться от центриолей, тем самым оттягивая хромосомы к полюсам и способствуя делению клетки

Матрикс или центросомное гало

Различные белки

Окружает центросому. В микроскопе выглядит как более светлое пятно цитоплазмы, окружающее клеточный центр. Принимает участие в сборке микротрубочек. Вместе с сателлитами и отходящими от них микротрубочками образуется центросферу, окружающую центриоли

Рис. 3. Формирование веретена деления.

READ  Прерии великих равнин северной америки. часть ii. растения. использование растительного покрова

Конструкция, которую образуют две центриоли, называется диплосомой. В ней различают материнскую и дочернюю центриоли. Только материнская центриоль производит микротрубочки. Дочерняя располагается перпендикулярно к материнской.

Строение бактериальной клетки

Размеры — от 1 до 15 мкм. Основные формы: 1) кокки (шаровидные), 2) бациллы (палочковидные), 3) вибрионы (изогнутые в виде запятой), 4) спириллы и спирохеты (спирально закрученные).

Формы бактерий: 1 — кокки; 2 — бациллы; 3 — вибрионы; 4—7 — спириллы и спирохеты.

Строение бактериальной клетки: 1 — цитоплазматическая мемб­рана; 2 — клеточ­ная стенка; 3 — слизис­тая кап­сула; 4 — цито­плазма; 5 — хромо­сомная ДНК; 6 — рибосомы; 7 — мезо­сома; 8 — фото­синтети­ческие мемб­раны; 9 — вклю­чения; 10 — жгу­тики; 11 — пили.

Бактериальная клетка ограничена оболочкой.

Внутренний слой оболочки представлен цитоплазматической мембраной (1), над которой находится клеточная стенка (2); над клеточной стенкой у многих бактерий — слизистая капсула (3). Строение и функции цитоплазматической мембраны эукариотической и прокариотической клеток не отличаются.

Мембрана может образовывать складки, называемые мезосомами (7). Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые и др.).

На поверхности мезосом располагаются ферменты. Клеточная стенка толстая, плотная, жесткая, состоит из муреина (главный компонент) и других органических веществ.

Муреин представляет собой правильную сеть из параллельных полисахаридных цепей, сшитых друг с другом короткими белковыми цепочками.

В зависимости от особенностей строения клеточной стенки бактерии подразделяются на грамположительные (окрашиваются по Граму) и грамотрицательные (не окрашиваются). У грамотрицательных бактерий стенка тоньше, устроена сложнее и над муреиновым слоем снаружи имеется слой липидов. Внутреннее пространство заполнено цитоплазмой (4).

Генетический материал представлен кольцевыми молекулами ДНК. Эти ДНК можно условно разделить на «хромосомные» и плазмидные.

«Хромосомная» ДНК (5) — одна, прикреплена к мембране, содержит несколько тысяч генов, в отличие от хромосомных ДНК эукариот она не линейная, не связана с белками. Зона, в которой расположена эта ДНК, называется нуклеоидом. Плазмиды — внехромосомные генетические элементы. Представляют собой небольшие кольцевые ДНК, не связаны с белками, не прикреплены к мембране, содержат небольшое число генов.

Количество плазмид может быть различным.

Клетка животных

Клетка — целостная и сложная биологическая система, мельчайшая единица строения многоклеточных организмов. Части клетки обеспечивают её нормальную жизнедеятельность, а при размножении — передачу наследственных признаков от родителей детям. В отличие от растительных клеток в клетках животных нет пластид, отсутствует клеточная оболочка.

Тела всех живых организмов состоят из клеток. Есть организмы, тела которых состоят только из одной клетки, — это бактерии, одноклеточные водоросли и грибы, простейшие. Тела большинства животных состоят из множества клеток.

Размер и форма клеток зависят от того, какую работу (функцию) они выполняют в организме.

Снаружи животная клетка покрыта эластичной клеточной мембраной. Она отделяет содержимое клетки от наружной среды и способна пропускать внутрь клетки одни вещества, а из клетки — другие, обеспечивая обмен веществ. В растительной клетке снаружи от мембраны расположена плотная оболочка, содержащая целлюлозу. В отличие от растительных клеток клетки животных такой оболочки не имеют.

Основное содержимое клетки, заполняющее весь её объём, — вязкая зернистая цитоплазма. Она постоянно движется, в ней протекают все жизненные процессы клетки. В цитоплазме периодически образуются пузырьки, наполненные жидкостью, — вакуоли. Они играют важную роль в пищеварении: здесь накапливаются питательные вещества; через вакуоли удаляются вредные продукты жизнедеятельности, и в результате поддерживается относительно постоянный состав цитоплазмы. Между клеткой и окружающей средой осуществляется обмен веществ.

Центральное место в цитоплазме занимает плотное округлое тельце — ядро. В нём находятся хромосомы, состоящие из длинных молекул органического вещества. Они регулируют процессы, протекающие в клетке, обеспечивают передачу наследственных признаков дочерним клеткам при размножении.

Помимо ядра в цитоплазме расположены другие органоиды (органеллы) — компоненты клетки, выполняющие определённые функции, — «клеточные органы».

Митохондрии отвечают за преобразование и запасание энергии, которая затем расходуется на жизненные процессы клетки. На рибосомах образуются белки, в аппарате Гольджи — жиры и углеводы. Кроме того, внутри аппарата Гольджи белки, жиры и углеводы накапливаются. Сюда они поступают по трубочкам эндоплазматической сети — этот органоид охватывает сетью разветвлённых канальцев всё пространство клетки и отвечает за транспортировку образованных в клетке веществ. В аппарате Гольджи вещества «упаковываются» в виде комочков и капелек, а потом уходят в цитоплазму и используются по назначению. Лизосомы участвуют в разрушении ненужных белков, жиров и углеводов.

В клетках животных отсутствуют пластиды, характерные для растительных клеток

Отсутствие хлоропластов — важное отличие животных клеток. Именно в них у растений происходит синтез органических веществ из неорганических

Животные, в отличие от растений, питаются готовыми органическими веществами.

Клетка животных содержит органоид, которого нет в растительных клетках. Он называется клеточным центром. Основу клеточного центра составляют два цилиндрических тельца. Они играют важную роль в делении клеток животных, обеспечивая равномерное распределение наследственного материала материнской клетки в образовавшихся клетках.

В цитоплазме клеток всех живых организмов можно обнаружить многочисленные мелкие и крупные зёрна, капельки белков, жиров и углеводов. Эти вещества образуются в разных частях клетки, транспортируются, распределяются и используются в процессе обмена веществ.

Это конспект по теме «Клетка животных». Выберите дальнейшие действия:

  • Перейти к следующему конспекту: Ткани, органы и системы органов
  • Вернуться к списку конспектов по Биологии.
  • Проверить знания по Биологии.

Химический состав, организация и функции поверхностных структур бактериальной клетки: капсулы, чехлы, фимбрии, пили

Поверхностные структуры –структуры, расположенные снаружи цитоплазматической мембраны. К ним относятся: клеточная стенка, жгутики, капсулы, слизистые слои, чехлы, различные ворсинки.

READ  Виды эрозии почвы и причины ее возникновения

Многие микроорганизмы продуцируют на поверхности клетки слизистое вещество. В зависимости от толщины слизистого слоя принято различать микрокапсулу,макрокапсулу, слизь.

Микрокапсулатолщиной до 0,2 мкм, прочно связана с клеточной стенкой. Макрокапсулапредставлена слоем слизи толщиной более 0,2 мкм.

Слизьвещество, которое окружает клетку, имеет аморфный вид, легко отделяется от поверхности клетки, по толщине превосходит диаметр клетки.

Все они не являются обязательными структурами бактериальной клетки.

Химическая природа капсул и слизи: полисахариды, полипептиды, реже – целлюлоза.

Капсулы и слизи выполняют следующие функции: защитную – предохраняют клетку от действия неблагоприятных факторов внешней среды; создают дополнительный осмотический барьер; способны выступать в качестве фактора вирулентности; служат барьером для бактериофагов; являются источником запасных питательных веществ; объединяют клетки в цепочки, колонии; обеспечивают прикрепление клеток к субстрату.

Чехлы имеют сложную тонкую структуру; в их составе выявляют несколько слоев разного строения, имеют сложный химический состав.

Между капсулами, чехлами и слизистыми слоями обнаружено много переходных форм, что не позволяет точно отличить их друг от друга.

Ворсинки, или фимбрии, – поверхностные структуры, которые состоят из белка пилина и не выполняют функцию движения. По размерам они короче и тоньше жгутиков. Число фимбрий на поверхности клетки колеблется от 1–2 до нескольких тысяч. Различают два типа фимбрий: общие и специфические.

Фимбрии общего типавыполняют функцию прикрепления клетки к поверхности субстрата. Специфические ворсинки – половые пили, обнаруженные у клеток так называемых доноров. Они имеют вид полых белковых трубочек длиной от 0,5 до 10 мкм.

· Поверхностные структуры –это структуры, расположенные снаружи цитоплазматической мембраны. К ним относятся: клеточная стенка, жгутики, капсулы, слизистые слои, чехлы, различные ворсинки.

· Химическая природа капсул и слизи:

– В большинстве случаев капсула образована полисахаридами (например, у бактерий вида Streptococcusmutans, некоторых бактерий родов Xanthomonas, Klebsiella, Corynebacteriumи др.).

– Капсулы же других видов бактерий состоят из полипептидов, представленных полимерами, в которых содержится много D- и L-форм глутаминовой кислоты. Примером такой капсулы является капсула бактерий Bacillusanthracis.

– Для ряда бактерий выявлена способность синтезировать капсулу, состоящую из волокон целлюлозы. Так построена капсула у бактерий Sarcinaventriculi.

– Слизи по химической природе являются полисахаридами. Особенно обильное их образование наблюдается у многих микроорганизмов при их росте на среде с сахарозой. Например, молочнокислые бактерии Leuconostocmesenteroidesбыстро превращают раствор, содержащий тростниковый сахар, в декстрановый гель, за что их на сахарных заводах называют «бактериями лягушачьей икры».

Рис. 1 – Капсулы пурпурной серобактерии (А) и азотфиксирующей бактерии (Б); клетки суспензированы в туши

· Практическое значение капсул и слизей: Капсульные полисахариды, образуемые бактериями, имеют большое практическое значение.

Так, ксантан, внеклеточный полисахарид бактерий Xanthomonascampestris, используется в составе смазок, при добыче нефти, в пищевой промышленности для улучшения вкусовых свойств консервированных и замороженных продуктов, соусов, кремов, а также в изготовлении косметики.

· Чехлы обычно имеют и более сложный химический состав. Например, чехол бактерий Sphaerotilisnatansсодержит 36 % углеводов, 11 – гексозамина, 27 – белков, 5,2 – липидов и 0,5 – фосфора. Чехлы ряда бактерий, метаболизм которых связан с окислением восстановленных соединений металлов, часто инкрустированы их окислами.

Особенности движения простейших

Одноклеточные организмы также способны передвигаться (инфузория туфелька, эвглена зеленая, амеба обыкновенная). Для перемещения в толще воды каждая особь наделена специфическими органоидами. У простейших такими органоидами являются реснички, жгутики, ложноножки.

Эвглена зелёная

Эвглена зелёная — представитель простейших из класса жгутиковых. Тело эвглены веретенообразной формы, удлиненное с заостренным концом. Органоиды движения эвглены зеленой представлены жгутиком, который находится на тупом конце. Жгутики — это тонкие выросты тела, число которых варьирует от одного до десятков.

Механизм движения при помощи жгутика отличается у разных видов. В основном это вращение в виде конуса, вершина которого обращена к телу. Перемещение наиболее эффективно при достижении углом вершины конуса 45°. Скорость колеблется в пределах от 10 до 40 оборотов за секунду. Часто наблюдается помимо вращательного движения жгутика, также его волнообразные покачивания.

Такой характер движения свойствен для одножгутиковых видов. У многожгутиковых нередко жгутики располагаются в одной плоскости и не формируют конуса вращения.

Микроскопическое строение жгутиков довольно сложное. Они окружены тонкой оболочкой, которая является продолжением наружного слоя эктоплазмы — пелликулы. Внутреннее пространство жгутика заполнено цитоплазмой и продольно расположенными нитями — фибриллами.

Периферически расположенные фибриллы отвечают за осуществление движения, а центральные выполняют опорную функцию.

Инфузория туфелька

Передвигается инфузория туфелька за счет ресничек, осуществляя ими волнообразные движения. Направляется вперед тупым концом.

Реснички двигаются в одной плоскости и делают прямой удар после полного выпрямления, а возвратный — в выгнутом положении. Удары идут последовательно один за другим с небольшой задержкой. Во время плаванья, инфузория осуществляет вращательные движения вокруг продольной оси.

Реснички инфузории туфельки

Перемещается туфелька со скоростью до 2,5мм/c. Направленность меняется за счёт перегибов тела. Если на пути будет преграда, то после столкновения инфузория начинает двигаться в противоположную сторону.

Все реснички инфузорииимеют сходное строение с жгутиками эвглены зеленой. Ресничка у основания образует базальное зерно, которое играет важную роль в механизме движения организма.

У некоторых инфузорий реснички соединяются между собой и таким образом позволяют развить большую скорость.

Инфузории относятся к высокоорганизованным простейшим и свою двигательную активность они осуществляют с помощью сокращений. Форма тела простейшего может меняться, а после возвращаться в прежнее состояние. Быстрые сократительные движения возможны благодаря наличию особых волокон — мионем.

Амеба обыкновенная

Амеба — простейшее довольно крупных размеров (до 0,5мм). Форма тела полиподиальная, обусловлена наличием множественных псевдоподий — это выросты с внутренней циркуляцией цитоплазмы.

У амебы обыкновенной псевдоподии еще называют ложноножками. Направляя ложноножки в разные стороны, амёба развивает скорость в 0,2 мм/минуту.

К органоидам движения простейших не относятся цитоплазма, ядро, вакуоли, рибосомы, лизосомы, ЭПР, Аппарат Гольджи.

Комментировать
0
0
Комментариев нет, будьте первым кто его оставит

;) :| :x :twisted: :sad: :roll: :oops: :o :mrgreen: :idea: :evil: :cry: :cool: :arrow: :P :D :???: :?: :-) :!: 8O

Это интересно