Относятся ли вирусы к живой природе?

Как человек вирусы приручал

Человек умел побеждать вирусы даже тогда, когда понятия не имел о их существовании (вирусы официально обнаружили лишь в самом конце XIX века). С глубокой древности известно, что есть болезни, которыми человек болеет всего лишь один раз. Вот холерой или ангиной можно болеть хоть по нескольку раз в год, пережившие одну чуму вполне могут протянуть ноги от второй, а у оспы, кори или какой-нибудь свинки есть только один шанс свести человека в могилу, после чего он окружается волшебным щитом и навеки от этих болезней защищен. (Сейчас мы знаем, что это не всегда работает именно так, но тогда с медстатистикой дела обстояли похуже.)

Почему вирусы не отвечают этим требованиям?

Чтобы получить возможность размножаться, вирусы должны сначала захватить репродуктивное оборудование клетки-хозяина. Они внедряют в него «фотокопию» своего генетического кода с помощью специального контейнера. Известного как «капсид». Без клетки-хозяина вирусы просто не смогут размножаться.

Вирусы проваливают ответ на второй вопрос по той же причине. В отличие от живых клеток, которые умеют самостоятельно делиться, вирусы не могут «собираться» сами по себе. Для этого они и берут под контроль клетку-хозяина. Которая производит и собирает вместе вирусные компоненты.

Наконец, вирус не считается живым, потому что ему не нужно потреблять энергию, чтобы выжить. И при этом он не может регулировать свою собственную температуру. В отличие от живых организмов, которые удовлетворяют свои энергетические потребности посредством метаболических процессов, которые синтезируют энергетически богатые единицы аденозинтрифосфата (АТФ), энергетической валюты жизни, вирусы не могут выжить сами по себе.

Теоретически, вирус может перемещаться в пространстве бесконечно долго. Потому что он не расходует энергию. Он может это делать до тех пор, пока не столкнется с нужной клеткой, которую сможет заразить. Создавая после заражения множество собственных копий.

Это три основных аргумента против. Но можно ли допустить, что вирусы все-таки могут быть живыми?

Версия, что вирус живой?

В последнее время некоторые биологи утверждают, что с 2003 года был сделан ряд новых открытий.

В первую очередь открытие растущего числа “гигантских” вирусов видимых под световым микроскопом, часто с большим двухцепочечным ДНК-геномом и большим содержанием генов. Эти относительно большие неклеточные инфекционные агенты радикально изменяют наши представления о живом или неживом статусе. Главным образом потому, что стало очень трудно провести границу между некоторыми клеточными организмами, сильно зависящими от своего хозяина и имеющими менее минимального генома, и гигантскими, которые кодируют многие гены и проявляют некоторую степень автономии.

Понятие организма

Проблема состоит в том, чтобы определить, в какой степени вирусы могут рассматриваться как организмы (с мыслью, что все организмы являются живыми существами, но не все живые существа являются организмами). Ответ на этот вопрос, естественно, будет зависеть от определения организма, которое мы принимаем. Многие биологи по ряду причин, упомянутых выше, таких как зависимость от хозяина и отсутствие автономного метаболизма, считают, что вирусы не являются организмами.

Понятие организма обычно рассматривается как более точное понятие живого существа, поскольку оно связано с идеей очень высокой степени функциональной организации и сотрудничества с сильными взаимодействиями между составными частями.

С этой точки зрения предположение о том, что вирусы все-таки могут принадлежать к категории организмов не имеет обоснования. Для некоторые людей согласившихся что вирусы не являются организмами, начали сомневаться, что вопрос «являются ли вирусы живыми» имеет значение.

Те, кто рассматривает жизнь прежде всего как метаболический процесс (преобразование питательных веществ), склонны исключать вирусы из живого мира, в то время как те, кто рассматривает жизнь прежде всего как эволюционный процесс, гораздо более склонны говорить, что вирусы принадлежат к живому миру.

Однако даже те, кто скептически относится к вопросу о живом статусе вирусов, обычно считают, что более широкий вопрос о месте вирусов в биологическом мире заслуживает внимания.
Действительно, независимо от их включения или исключения из категории живых существ, вирусы обязательно выступают в качестве основных биологических объектов с нескольких ключевых точек зрения.

Вирусы являются Дарвиновскими сущностями, самовоспроизводящимися и подверженными эволюционным процессам, таким как естественный отбор и дрейф, в то же время оказывая избирательное давление на своих хозяев.

Все это говорит о том, что вопрос о том, что делают вирусы (различные эволюционные, экологические и физиологические явления, в которые они вовлечены), на самом деле не менее важен, чем вопрос о том, что они собой представляют (то есть вирус живой или неживой).

Таким образом, изучение вирусов поднимает фундаментальные вопросы, связанные с определением жизни, биологической индивидуальности и идентичности, понятием организма и онтологией живых существ или процессов.

В этом контексте философам биологии – и, возможно, даже всем философам-кажется крайне важным начать обращать внимание на вирусы которые могут изменить мир

Кто нас защищает

Бактериофаги (или «фаги») — это вирусы, которые заражают и уничтожают определенные бактерии. Они обнаружены в слизистой оболочке пищеварительного, дыхательного и репродуктивного трактов.

Слизь — это густой, похожий на желе материал. Основная задача слизи — сделать так, чтобы вредоносные бактерии не попадали внутрь и защитить клетки организма от заражения. Согласно данным недавних исследований, присутствующие в слизи фаги являются частью естественной иммунной системы человека. Они защищают организм от вторжения бактерий.

Сегодня ученые научились генно-модифицировать фаги. Отдельные штаммы фагов тестируются против вредоносных бактерий. Благодаря генно-модифицированным фагам в будущем появятся препараты для лечения разнообразных бактериальных заболеваний. Их можно будет безопасно вводить перорально или наносить непосредственно на раны.

Отметим, что клинические испытания внутривенного введения фагов продолжаются. Кстати, недавно эту тему жарко обсуждали в нашем Telegram-чате.

Насколько они паразиты и вредители

Конечно, на примитивном уровне возникает соблазн сразу отнести вирусы к однозначным вредителям. Однако в реальности, как всегда, все сложнее и запутаннее, и вражда Монтекки с Капулетти — это детский сад по сравнению со сложной многоуровневой системой борьбы и сотрудничества в микробиологии. Например, в нашем организме, прежде всего в слизистых и кишечнике, живут наши безусловные друзья — вирусы-бактериофаги. Они и не думают поражать наши клетки, так как не специализируются на гомо сапиенс, им подавай клетки всяких сальмонелл, кишечных палочек и стафилококков. Как только кто-то из перечисленных попадает в цепкие лапы вирусов-бактериофагов, начинается избиение младенцев. Поэтому одни люди едят сырые яйца и целуются с бомжами и при этом прекрасно себя чувствуют, а другие попадают в реанимацию после не слишком хорошо приготовленного крем-брюле.

Дело тут не только в «природном иммунитете», но и в том, насколько много правильных вирусов-бакте­рио­фагов решило в нас поселиться. Поэтому уже сейчас в продвинутых исследовательских клиниках людей с индивидуальной непереносимостью антибиотиков лечат от бактериальных инфекций вирусами.

РЕПЛИКАЦИЯ ВИРУСОВ

Генетическую информацию, закодированную в отдельном гене, в общем можно рассматривать как инструкцию по производству определенного белка в клетке. Такая инструкция воспринимается клеткой только в том случае, если она послана в виде мРНК. Поэтому клетки, у которых генетический материал представлен ДНК, должны «переписать» (транскрибировать) эту информацию в комплементарную копию мРНК (см. также НУКЛЕИНОВЫЕ КИСЛОТЫ). ДНК-содержащие вирусы по способу репликации отличаются от РНК-содержащих вирусов.

ДНК обычно существует в виде двухцепочечных структур: две полинуклеотидные цепочки соединены водородными связями и закручены таким образом, что образуется двойная спираль. РНК, напротив, обычно существует в виде одноцепочечных структур. Однако геном отдельных вирусов представляет собой одноцепочечную ДНК или двухцепочечную РНК. Нити (цепочки) вирусной нуклеиновой кислоты, двойные или одинарные, могут иметь линейную форму или замыкаться в кольцо.

Первый этап репликации вирусов связан с проникновением вирусной нуклеиновой кислоты в клетку организма-хозяина. Этому процессу могут способствовать специальные ферменты, входящие в состав капсида или внешней оболочки вириона, причем оболочка остается снаружи клетки или вирион теряет ее сразу после проникновения внутрь клетки. Вирус находит подходящую для его размножения клетку, контактируя отдельными участками своего капсида (или внешней оболочки) со специфическими рецепторами на поверхности клетки по типу «ключ – замок». Если специфические («узнающие») рецепторы на поверхности клетки отсутствуют, то клетка не чувствительна к вирусной инфекции: вирус в нее не проникает.

Для того чтобы реализовать свою генетическую информацию, проникшая в клетку вирусная ДНК транскрибируется специальными ферментами в мРНК. Образовавшаяся мРНК перемещается к клеточным «фабрикам» синтеза белка – рибосомам, где она заменяет клеточные «послания» собственными «инструкциями» и транслируется (прочитывается), в результате чего синтезируются вирусные белки. Сама же вирусная ДНК многократно удваивается (дуплицируется) при участии другого набора ферментов, как вирусных, так и принадлежащих клетке.

Синтезированный белок, который используется для строительства капсида, и размноженная во многих копиях вирусная ДНК объединяются и формируют новые, «дочерние» вирионы. Сформированное вирусное потомство покидает использованную клетку и заражает новые: цикл репродукции вируса повторяется. Некоторые вирусы во время отпочковывания от поверхности клетки захватывают часть клеточной мембраны, в которую «заблаговременно» встроились вирусные белки, и таким образом приобретают оболочку. Что касается клетки-хозяина, то она в итоге оказывается поврежденной или даже полностью разрушенной.

У некоторых ДНК-содержащих вирусов сам цикл репродукции в клетке не связан с немедленной репликацией вирусной ДНК; вместо этого вирусная ДНК встраивается (интегрируется) в ДНК клетки-хозяина. На этой стадии вирус как единое структурное образование исчезает: его геном становится частью генетического аппарата клетки и даже реплицируется в составе клеточной ДНК во время деления клетки. Однако впоследствии, иногда через много лет, вирус может появиться вновь – запускается механизм синтеза вирусных белков, которые, объединяясь с вирусной ДНК, формируют новые вирионы.

У некоторых РНК-содержащих вирусов геном (РНК) может непосредственно выполнять роль мРНК. Однако эта особенность характерна только для вирусов с «+» нитью РНК (т.е. с РНК, имеющей положительную полярность). У вирусов с «-» нитью РНК последняя должна сначала «переписаться» в «+» нить; только после этого начинается синтез вирусных белков и происходит репликация вируса.

Так называемые ретровирусы содержат в качестве генома РНК и имеют необычный способ транскрипции генетического материала: вместо транскрипции ДНК в РНК, как это происходит в клетке и характерно для ДНК-содержащих вирусов, их РНК транскрибируется в ДНК. Двухцепочечная ДНК вируса затем встраивается в хромосомную ДНК клетки. На матрице такой вирусной ДНК синтезируется новая вирусная РНК, которая, как и другие, определяет синтез вирусных белков. См. также РЕТРОВИРУСЫ.

Вирусная форма жизни

Как уже говорилось выше, вирус не может существовать вне клетки живого организма, так как не имеет собственного обмена веществ. Для синтеза собственных молекул ему нужна клетка-хозяин. Вне такой клетки вирус ведет себя как частица биополимера и не проявляет признаков живого существа.

Пока вирус находится вне клетки, он существует в виде независимой частицы. Размер этой частицы настолько мал, что разглядеть в простой световой микроскоп большую часть вирусов просто невозможно. Его размер примерно в 100 раз меньше размера бактерии, а форма варьируется от просто спиральной до более сложных структур. Одна их форм похожа на корону. Именно она и является тем самым коронавирусом.

Некоторые ученые называют вирус организмами на грани живого. С одной стороны, они не живые, но с другой, могут размножаться, эволюционировать и вести жизнедеятельность, хоть и за счет внешнего питания белковыми структурами клетки-хозяина.

Основу жизненного цикла вируса составляет всего несколько этапов. Первый называется прикрепление. На этом этапе создаются связи между белками вирусного капсида и поверхности клетки-хозяина. Иногда вирусы взаимодействуют только с определенными клетками, как, например, ВИЧ с лейкоцитами.

На втором этапе происходит проникновение в клетку-хозяина. После этого вирус освобождается от своего капсида. Проще говоря, он вылезает из своей оболочки и запускает свой геном в клетку. Способ освобождение от капсида бывает разным. Оболочка может растворяться ферментами самого вируса или делать это за счет элементов внутри клетки.

После этого вирус реплицируется (размножается), синтезируя ранние гены вируса. Далее он собирается в структуры и на последнем этапе покидает клетку после ее гибели. Зачастую, это происходит из-за разрыва клеточной мембраны.

Относятся ли вирусы к живой природе?

Таким образом вирус проникает в клетку и высвобождает свой геном.

Многие вирусы не приводят к разрушению клеток и до определенного времени никак себя не проявляют. Они могут годами существовать внутри клетки, вызывая хронические заболевания. Примерами таких вирусов может быть герпес, который проявляется только при определенном сочетании факторов, или папилломавирус, который в некоторых случаях может приводить к развитию онкологических заболеваний. Еще одним примером таких вирусов является вирус Эпшейн-Барра. Он приводит к ускоренному делению клеток, но без признаков злокачественности.

Вклад вирусов в исследование эволюции

Как говорил выдающийся биолог прошлого века Феодосий Добжанский: «Ничто в биологии не имеет смысла, кроме как в свете эволюции». В отношении вирусов это высказывание справедливо, как нигде больше. Объяснение этого выглядит немного витиевато, но попробую дать его покороче.

Относятся ли вирусы к живой природе?

В этой цепочке можно найти следы вирусов.

Сотни, тысячи и миллионы лет назад живые организмы тоже подвергались воздействию вирусов. Кроме того, что это способствовало естественному отбору, позволяло “почистить” популяцию и помогало живым организмам развиваться, это накладывало отпечаток, который сейчас позволяет проводить исследования происхождения видов и последовательностей эволюционных цепочек.

Дело в том, что вирусы, которые попадали в организм древних животных могли их убить. Если они их не убивали, то оставались в организмах в виде безопасного вируса, который утрачивал свои свойства. Он становился чем-то вроде солдата в отставке. Если такие ретровирусы оказывались в половой системе, они могли передаваться новым поколениям и менять их ДНК. Тем самым они не просто попадали в организм, но и блуждали по его потомкам в течение миллионов лет.

Когда человечество смогло расшифровать ДНК, выяснилось, что такие следы, вне зависимости от вида живого организма, находились в одном месте. В итоге это привело к тому, что находя связи между животными по этому признаку, можно сделать вывод, что эти животные имели общего предка. Вероятность случайного совпадения такой записи в ДНК является ничтожно малой. Настолько, что ей можно пренебречь.

Таким образом ученые биологи получили еще один способ доказательства существования эволюции и общего происхождения видов. Как говорится, “откуда не ждали”.

Мы построили им рай

Пожалуй, главное оружие вирусов — это способность чрезвычайно быстро меняться. В частности, у ВИЧ это свойство обусловлено тем, что фермент обратная транскриптаза делает ошибки при копировании вируса в организме. Как будто полиция ищет преступника по фотороботу и отпечаткам, а он каждый день меняет свой облик. У других вирусов есть свои механизмы изменчивости. Благодаря им, к примеру, вирус Эбола за двадцать лет с момента открытия изменился на целую четверть.

Относятся ли вирусы к живой природе?
Наш эксперт Евгений Комаровский, врач-педиатр, инфекционист, телеведущий: «Главная сложность лечения вирусных инфекций состоит в том, что некий лекарственный препарат должен проникнуть внутрь клетки человеческого организма и уничтожить вирус, не повредив при этом саму клетку и ее соседей. Поэтому действие противовирусных препаратов, как правило, направлено на замедление размножения вируса и активизацию собственного иммунитета. Лучшая стратегия противодействия вирусам — профилактика. 1. Прививки. Введение в организм ослабленного вируса приводит к выработке вполне полноценных антител, защищающих человека от конкретной вирусной инфекции (кори, краснухи, полиомиелита, гепатита В, гриппа, клещевого энцефалита и проч.). 2. Предотвращение или ограничение контактов с вероятным источником инфекции (отдельная комната для больного острой респираторной инфекцией и маски для его родственников, «разборчивая» половая жизнь для предотвращения СПИДа и т. д.). 3. Образ жизни и система воспитания, формирующие нормальный иммунитет».

Сегодня не только ВИЧ представляет опасность для человечества. Мало кто знает о мировой эпидемии, вызванной вирусом гепатита С. Он был открыт в 1989 году, и сейчас по всему миру насчитывается 150 млн человек — его носителей. И 400 000 человек ежегодно умирает от вызванных им осложнений. Атипичная пневмония, лихорадка Эбола, «птичий» грипп, коронавирус MERS и другие, неизвестные пока инфекции при определенных обстоятельствах могут вызвать эпидемии с большими человеческими жертвами. Природный резервуар «запчастей» для вирусов огромен, и они могут складываться в опасные формы.

Этот процесс называется рекомбинацией вирусов — вирусы обмениваются своими генами друг с другом, создавая новые виды. Такая рекомбинация может происходить как между разными ДНК, так и разными РНК. Причем участвует в обмене генетический материал не только вирусов, но и их носителей — к примеру, может соединяться вирус животного и человека. Именно так появляются новые опасные формы вирусов.

Относятся ли вирусы к живой природе?

Но почему именно сегодня новые вирусы появляются все чаще? Профессор Института молекулярной биологии и генетики, академик Виталий Кордюм называет несколько основных причин, главные из них — сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и возможность быстрого перемещения носителей вируса. Благодаря научному и техническому прогрессу носитель опасной инфекции за несколько суток может добраться с одного континента на другой. Этот же прогресс стал причиной того, что последние 70 лет происходит односторонняя миграция населения из сел и малых городов в крупные города, что привело к возникновению компактных многомиллионных поселений.

Очевидно, что наш современный «урбанистический» образ жизни играет в процессах стремительной эволюции вирусов не последнюю роль. Человек, устраивая свою жизнь с комфортом и переделывая все вокруг на свой вкус, вдруг забыл, что он обычный биологический вид, и перестал жить по законам природы. А вирусы напоминают нам об этом.

Статья «Золотой век вирусов» опубликована в журнале «Популярная механика»
(№9, Сентябрь 2015).

Распространение

Через Интернет, локальные сети и съёмные носители.

Механизм

Вирусы распространяются, копируя своё тело и обеспечивая его последующее исполнение: внедряя себя в исполняемый код других программ, заменяя собой другие программы, прописываясь в автозапуск через реестр и другое. Вирусом или его носителем могут быть не только программы, содержащие машинный код, но и любая информация, содержащая автоматически исполняемые команды, — например, пакетные файлы и документы Microsoft Word и Excel, содержащие макросы. Кроме того, для проникновения на компьютер вирус может использовать уязвимости в популярном программном обеспечении (например, Adobe Flash, Internet Explorer, Outlook), для чего распространители внедряют его в обычные данные (картинки, тексты и т. д.) вместе с эксплойтом, использующим уязвимость.

После того как вирус успешно внедрился в коды программы, файла или документа, он будет находиться в состоянии сна, пока обстоятельства не заставят компьютер или устройство выполнить его код. Чтобы вирус заразил ваш компьютер, необходимо запустить заражённую программу, которая, в свою очередь, приведёт к выполнению кода вируса. Это означает, что вирус может оставаться бездействующим на компьютере без каких-либо симптомов поражения. Однако, как только вирус начинает действовать, он может заражать другие файлы и компьютеры, находящиеся в одной сети. В зависимости от целей программиста-вирусописателя, вирусы либо причиняют незначительный вред, либо имеют разрушительный эффект, например удаление данных или кража конфиденциальной информации.

Каналы

  • Дискеты. Самый распространённый канал заражения в 1980—1990-е годы. Сейчас практически отсутствует из-за появления более распространённых и эффективных каналов и отсутствия флоппи-дисководов на многих современных компьютерах.
  • Флеш-накопители («флешки»). В настоящее время USB-накопители заменяют дискеты и повторяют их судьбу — большое количество вирусов распространяется через съёмные накопители, включая цифровые фотоаппараты, цифровые видеокамеры, портативные цифровые плееры, а с 2000-х годов всё большую роль играют мобильные телефоны, особенно смартфоны (появились мобильные вирусы). Использование этого канала ранее было преимущественно обусловлено возможностью создания на накопителе специального файла autorun.inf, в котором можно указать программу, запускаемую Проводником Windows при открытии такого накопителя. В Windows 7 возможность автозапуска файлов с переносных носителей была отключена.
  • Электронная почта. Обычно вирусы в письмах электронной почты маскируются под безобидные вложения: картинки, документы, музыку, ссылки на сайты. В некоторых письмах могут содержаться действительно только ссылки, то есть в самих письмах может и не быть вредоносного кода, но если открыть такую ссылку, то можно попасть на специально созданный веб-сайт, содержащий вирусный код. Многие почтовые вирусы, попав на компьютер пользователя, затем используют адресную книгу из установленных почтовых клиентов типа Outlook для рассылки самого себя дальше.
  • Системы обмена мгновенными сообщениями. Здесь также распространена рассылка ссылок на якобы фото, музыку либо программы, в действительности являющиеся вирусами, по ICQ и через другие программы мгновенного обмена сообщениями.
  • Веб-страницы. Возможно также заражение через страницы Интернета ввиду наличия на страницах всемирной паутины различного «активного» содержимого: скриптов, ActiveX-компонент. В этом случае используются уязвимости программного обеспечения, установленного на компьютере пользователя, либо уязвимости в ПО владельца сайта (что опаснее, так как заражению подвергаются добропорядочные сайты с большим потоком посетителей), а ничего не подозревающие пользователи, зайдя на такой сайт, рискуют заразить свой компьютер.
  • Интернет и локальные сети (черви). Черви — вид вирусов, которые проникают на компьютер-жертву без участия пользователя. Черви используют так называемые «дыры» (уязвимости) в программном обеспечении операционных систем, чтобы проникнуть на компьютер. Уязвимости — это ошибки и недоработки в программном обеспечении, которые позволяют удалённо загрузить и выполнить машинный код, в результате чего вирус-червь попадает в операционную систему и, как правило, начинает действия по заражению других компьютеров через локальную сеть или Интернет. Злоумышленники используют заражённые компьютеры пользователей для рассылки спама или для DDoS-атак.

МЕТОДЫ ИЗУЧЕНИЯ ВИРУСОВ

Вирусы бактерий первыми стали объектом детальных исследований как наиболее удобная модель, обладающая рядом преимуществ по сравнению с другими вирусами. Полный цикл репликации фагов, т.е. время от заражения бактериальной клетки до выхода из нее размножившихся вирусных частиц, происходит в течение одного часа. Другие вирусы обычно накапливаются в течение нескольких суток или даже более продолжительного времени. Незадолго до Второй мировой войны и вскоре после ее окончания были разработаны методы изучения отдельных вирусных частиц. Чашки с питательным агаром, на котором выращен монослой (сплошной слой) бактериальных клеток, заражают частицами фага, используя для этого его последовательные разведения. Размножаясь, вирус убивает «приютившую» его клетку и проникает в соседние, которые тоже гибнут после накопления фагового потомства. Участок погибших клеток виден невооруженным глазом как светлое пятно. Такие пятна называют «негативными колониями», или бляшками. Разработанный метод позволил изучать потомство отдельных вирусных частиц, обнаружить генетическую рекомбинацию вирусов и определить генетическую структуру и способы репликации фагов в деталях, казавшихся ранее невероятными.

Работы с бактериофагами способствовали расширению методического арсенала в изучении вирусов животных. До этого исследования вирусов позвоночных выполнялись в основном на лабораторных животных; такие опыты были очень трудоемки, дороги и не очень информативны. Впоследствии появились новые методы, основанные на применении тканевых культур; бактериальные клетки, использовавшиеся в экспериментах с фагами, были заменены на клетки позвоночных. Однако для изучения механизмов развития вирусных заболеваний эксперименты на лабораторных животных очень важны и продолжают проводиться в настоящее время.

Диагностика

Первичная диагностика лихорадки Эбола основана на данных эпидемиологического расследования и клиники заболевания. Окончательный диагноз устанавливается на основании данных лабораторных методов исследования, которые проводятся в условиях максимальной биологической защиты ввиду чрезвычайно высокой биологической опасности образцов для исследования:

  1. Идентификация вируса Эбола в инфицированных культурах с помощью проведения электронной микроскопии и применения методики флуоресцирующих антител.
  2. Выделение культуры возбудителя.
  3. Серологические исследования (выявление антигенов и антител к вирусу) с применением РН, ИФА, РИФ, РСК и др. Специфические антитела к Эбола обнаруживаются с 5-х суток заболевания, а с 14-х суток — постоянно.
  4. Полимеразная цепная реакция (ОТ-ПЦР). Методика является эффективной и высокоспецифичной.
  5. При проведении ощеклинических и биохимических методов исследования в крови отмечается низкий уровень тромбоцитов и белых кровяных клеток, повышение содержания печеночных ферментов.

Дифференциальная диагностика. Лихорадку Эбола следует отличать от других геморрагических лихорадок, малярии, септицемии, тифоидной лихорадки, холеры, менингита и гепатита.

Рис. 15. Работа с патогенными микроорганизмами в лаборатории высшего уровня биологической безопасности.

Рис. 16. Забор крови у больного лихорадкой Эбола.

Лихорадка Эбола может быть заподозрена у лиц с характерными клиническими симптомами, находящихся в эпидемиологически неблагополучных регионах Африки или контактировавших с больными. Специфическая диагностика инфекции проводятся в специальных вирусологических лабораториях с соблюдением требований биологической безопасности повышенного уровня. Эболавирус может быть выделен из слюны, мочи, крови, носоглоточной слизи и других биологических жидкостей с помощью заражения клеточных культур, ОТ-ПЦР, электронной микроскопии биоптатов кожи и внутренних органов. Серологическая диагностика лихорадки Эбола основана на обнаружении антител к вирусу методами ИФА, РНГА, РСК и др.

Неспецифические изменения в общем анализе крови включают анемию, лейкопению (позже – лейкоцитоз), тромбоцитопению; в общем анализе мочи – выраженную протеинурию. Биохимические изменения крови характеризуются азотемией, увеличением активности трансфераз и амилазы; при исследовании коагулограммы выявляются признаки гипокоагуляции; КОС крови – признаки метаболического ацидоза. С целью оценки тяжести течения и прогноза лихорадки Эбола больным может потребоваться проведение рентгенографии органов грудной клетки, ЭКГ, УЗИ органов брюшной полости, ФГДС. Дифференциальная диагностика проводится с малярией, септицемией, тифом, другими геморрагическими лихорадками, прежде всего, с лихорадкой Марбург, Ласса, желтой лихорадкой. Больным могут быть показаны консультации инфекциониста, гастроэнтеролога, невролога, гематолога и других специалистов.

ЛЕЧЕНИЕ И ПРОФИЛАКТИКА.

Репродукция вирусов тесно переплетается с механизмами синтеза белка и нуклеиновых кислот клетки в зараженном организме. Поэтому создать лекарства, избирательно подавляющие вирус, но не наносящие вреда организму, – задача чрезвычайно трудная. Все же оказалось, что у наиболее крупных вирусов герпеса и оспы геномные ДНК кодируют большое число ферментов, отличающихся по свойствам от сходных клеточных ферментов, и это послужило основой для разработки противовирусных препаратов. Действительно, создано несколько препаратов, механизм действия которых основан на подавлении синтеза вирусных ДНК. Некоторые соединения, слишком токсичные для общего применения (внутривенно или через рот), годятся для местного использования, например при поражении глаз вирусом герпеса.

Известно, что в организме человека вырабатываются особые белки – интерфероны. Они подавляют трансляцию вирусных нуклеиновых кислот и таким образом угнетают размножение вируса. Благодаря генной инженерии стали доступны и проходят проверку в медицинской практике интерфероны, производимые бактериями.

К самым действенным элементам естественной защиты организма относятся специфические антитела (специальные белки, вырабатываемые иммунной системой), которые взаимодействуют с соответствующим вирусом и тем самым эффективно препятствуют развитию болезни; однако они не могут нейтрализовать вирус, уже проникший в клетку. Примером может служить герпетическая инфекция: вирус герпеса сохраняется в клетках нервных узлов (ганглиев), где антитела не могут его достичь. Время от времени вирус активируется и вызывает рецидивы заболевания.

Обычно специфические антитела образуются в организме в результате проникновения в него возбудителя инфекции. Организму можно помочь, усиливая выработку антител искусственно, в том числе создавая иммунитет заранее, с помощью вакцинации. Именно таким способом, путем массовой вакцинации, заболевание натуральной оспой было практически ликвидировано во всем мире.

Современные методы вакцинации и иммунизации разделяются на три основных группы. Во-первых, это использование ослабленного штамма вируса, который стимулирует в организме продуцирование антител, эффективно действующих против более патогенного штамма. Во-вторых, введение убитого вируса (например, инактивированного формалином), который тоже индуцирует образование антител. Третий вариант – т.н. «пассивная» иммунизация, т.е. введение уже готовых «чужих» антител. Животное, например лошадь, иммунизируют, затем из ее крови выделяют антитела, очищают их и используют для введения пациенту, чтобы создать немедленный, но непродолжительный иммунитет. Иногда используют антитела из крови человека, перенесшего данное заболевание (например, корь, клещевой энцефалит).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: