ТОП 7 фактов о вирусах убивающих бактерии — бактериофагах

Король вирусов

Каждый из нас встречал людей крепкого здоровья, устойчивых перед всевозможными сезонными вирусами вроде ОРВИ или гриппа. Даже вирус оспы не убивал всех без исключения заразившихся, даже лихорадка Эбола, наводящая сегодня ужас на жителей Африки, оставляет в живых четверть заразившихся.

И лишь по отношению к одной-единственной инфекции иммунная система оказывается бессильна в 100% случаев заражения. Ни один из 50 млн инфицированных ВИЧ не доживет до глубокой старости. Возможности, даже теоретической, противостоять ВИЧ и СПИДу пока не обнаружено.

Проблема борьбы с ВИЧ включает в себя несколько факторов. Так, иммунная система человека, вместо того чтобы бороться с вирусом, иногда помогает ему. Этот феномен получил название «антителозависимое усиление инфекции» (ADE): антитела, которые вырабатываются в организме в ответ на вирусную атаку, облегчают проникновение вируса в клетку, выступая для миниатюрных вирионов своеобразным поводырем. Подобным вирусным механизмом пользуются также вирусы лихорадки Денге и Эбола.

ТОП 7 фактов о вирусах убивающих бактерии — бактериофагах

В 1991 году клеточные биологи из Мэриленда, изучая иммунный ответ на ВИЧ-вакцину, обнаружили феномен антигенного импринтинга. Оказалось, что иммунная система запоминает лишь один, самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Но и это еще не все уловки в арсенале смертоносной инфекции. В нашем организме существуют специальные антиретровирусные системы, которые должны противостоять всем ретровирусам, в том числе и ВИЧ (подробнее о ретровирусах можно прочитать в июльском номере журнала). Таких систем сегодня известно две: AID/APOBEC и TRIM5-α. Но, как выяснилось, вместо того чтобы бороться с ВИЧ, эти антивирусные системы стали его «опричниками» — они защищают вирус иммунодефицита от дефектных копий и других вирусов.

ТОП 7 фактов о вирусах убивающих бактерии — бактериофагах

По одной из версий, причина в том, что древние ретроэлементы, от которых произошли ретровирусы, в процессе эволюции становились частью нашего собственного генома. Поэтому иммунная система «по старой памяти» может принимать вирусы «за своих».

Чем занимается вирион?

Ничем. Именно из-за того, что вирионы не затрачивают энергии, не потребляют ее, ничем не питаются и никак не движутся, им отказывают в праве называться живыми в полном смысле этого слова. Жизни в них не больше, чем в градинах или каплях дождя, — сплошное повиновение законам химии и физики без малейшей инициативы. При этом и ученый, смотрящий на кипучую деятельность вирусов в электронный микроскоп, и фермер, мрачно наблюдающий за веселым танцем градин в его любимой кукурузе, с трудом отделываются от ощущения, что все это безобразие еще какое живое и энергичное!

Одни вирусы могут существовать только внутри живых организмов, другие — прекрасно путешествуют по миру в слюне, соке, пыльце, слезах, фекалиях и прочих временных ковчегах, которые эти организмы оставляют после себя. Есть и вирусы, способные почти бесконечно долго существовать посреди пустынь и полярных айсбергов. Огромное количество вирусов обитает в воде, прежде всего морской; в одной чайной ложке морской воды, взятой с поверхности, будет плескаться не менее миллиона вирионов. (Это не повод отныне заходить в море только в скафандре: тамошние вирусы специализируются в основном по бактериям, водорослям и вообще по планктону, а твои клетки им до лампочки.) Как и было сказано, вирус вне клеток хозяина ничего не делает, просто ждет своего часа. Этот час наступает, когда вирус оказывается рядом с подходящей ему клеткой. Обычно он покрыт разнообразными шипами, крючками и наростиками из разных типов белков, которые умеют определять близость правильной клетки и цепляться к ней. Дальше вирусы действуют по-разному: либо они пробираются внутрь клетки, либо прирастают к ней, либо просто впрыскивают свой генетический материал в клетку. Отныне эта клетка будет продуцировать копии вируса по предоставленным схемам, используя для этого свою энергию и свой строительный материал. Продуцировать — и выпускать в мир. Иногда клеткам и организму эта деятельность никак не мешает. Иногда ему даже полезна. А иногда она его убивает.

Вне клеток вирусы размножаться не умеют. Тем не менее вирусы существуют, и вполне успешно: это самая распространенная форма жизни-нежизни на Земле. Человек пока не очень хорошо изучил эту форму, мы умеем более или менее точно определять лишь около 6000 видов вирусов. Но считается, что их гораздо больше совокупного количества видов всех живых существ на Земле: и бактерий, и других животных, и растений. И нет ни одного живого существа, в котором бы эти вирусы не были расквартированы буквально повсюду. Есть даже такие, которые паразитируют на других вирусах, их называют вирусами-сателлитами и вирофагами.

Даже наши собственные геномы состоят в том числе и из всяких выродившихся вирусов, которые некогда туда проникли и теперь копируются из поколения в поколение — без цели и без смысла. По крайней мере, раньше считалось, что без цели, хотя теперь появились свидетельства, что некоторые казавшиеся пассивными вирусы и их ошметки в нашей ДНК оказывают куда большее влияние на нас и наше здоровье — например, способствуют отбору тех или иных генов при зачатии и «включению» их. Но там пока темна вода во облацех и черт ногу сломит, так что не будем углубляться.

ТОП 7 фактов о вирусах убивающих бактерии — бактериофагах

История открытия

ТОП 7 фактов о вирусах убивающих бактерии — бактериофагах

Исследователь бактериологии Ф. Туорт создал описание инфекционного заболевания, которое предложил в статье, выпущенной в 1915 году. Данная болезнь поражала стафилококки и могла проходить сквозь любые фильтры, а также могла транспортироваться из одной колонии клеток в другие.

Микробиолог родом из Канады Ф. Д’Эрелль совершил открытие бактериофагов в сентябре 1917 года. Их обнаружение было сделано независимо от трудов Ф. Туорота.

В 1897 г. Н. Ф. Гамалея стал наблюдателем явления лизиса бактерии, который протекал под воздействием процесса прививки агента.

Вирусы бактерий – бактериофаги-паразиты, играющие огромную роль в процессе патогенеза инфекций. Они заняты обеспечением выздоровления организма многоклеточного типа от многих болезней, и потому образуют специфический тип иммунной системы. Впервые об этом заговорил Д’Эрелль, а позднее развил это в учение

Данное положение привлекло множество ученых, которые начали исследовать эту область и пытаться найти ответы на такие вопросы, как: какое клеточное строение (кристаллы) имеют бактерии-вирусы бактериофаги? Каковы процессы внутри них, их дальнейшая судьба и развитие? Все это и многое другое привлекло внимание множества исследователей

ТОП 7 фактов о вирусах убивающих бактерии — бактериофагах

НЕКЛЕТОЧНЫЕ ФОРМЫ ЖИЗНИ. Вирусы и фаги (бактериофаги)

Ключевые слова конспекта: неклеточные формы жизни, царство вирусы, фаги (бактериофаги)

Вирусы являются неклеточной формой жизни и занимают пограничное положение между неживой и живой матерней. Вирусы — внутриклеточные паразиты и могут проявлять свойства живых opганизмов, только попав внутрь клетки.

Отличия вирусов от неживой природы:

  1.  способность к размножению;
  2.  наследственность и изменчивость

Отличия вирусов от клеточных организмов:

  1.  не имеют клеточного строения;
  2.  не проявляют обмена веществ и энергии (метаболизма);
  3.  могут существовать только как внутриклеточные паразиты;
  4.  не увеличиваются в размерах (не растут);
  5.  имеют особый способ размножения;
  6. имеют только одну нуклеиновую кислоту — либо ДНК, либо РНК.

Вирусы существуют в двух формах:

  • покоящейся (внеклеточной), когда их свойства как живых систем не проявляются,
  • внутриклеточной, когда осуществляется размножение вирусов.

Простые вирусы (например, вирус табачной мозаики) состоят из молекулы нуклеиновой кислоты и белковой оболочки капсида. Некоторые более сложные вирусы (гриппа, герпеса и др.) помимо белков капсида и нуклеиновой кислоты могут содержать липопротеиновую мембрану, углеводы и ряд ферментов. Белки защищают нуклеиновую кислоту и обусловливают ферментативные и антигенные свойства вирусов. Форма капсида может быть палочковидной, нитевидной, сферической и др.

В зависимости от присутствующей в вирусе нуклеиновой кислоты различают РНК-содержащие и ДНК-содержащие вирусы. Нуклеиновая кислота содержит генетическую информацию, обычно о строении белков капсида. Она может быть линейная или кольцевидная, в виде одно- или двуцепочечной ДНК, одно- или двуцепочечной РНК.

Проникновение в клетку

При проникновении вируса внутрь клетки специальные белки вирусной частицы связываются с белками-рецепторами клеточной оболочки. В животную клетку вирус может проникать при процессах пино- и фагоцитоза, в растительную клетку — при различных повреждениях клеточной стенки.

Вирус подавляет существующие в клетке процессы транскрипции и трансляции. Он использует их для синтеза собственных нуклеиновой кислоты и белка, из которых собираются новые вирусы. После этого клеточные оболочки разрушаются и новообразованные вирусы покидают клетку, которая при этом погибает.

Бактериофаги (вирусы, паразитирующие на бактериях), как правило, не попадают внутрь клетки, так как этому препятствуют толстые клеточные стенки бактерий. Внутрь клетки проникает только нуклеиновая кислота вируса.

Полагают, что происхождение вирусов связано с эволюцией каких-то клеточных форм, которые в ходе приспособления к паразитическому образу жизни вторично утратили клеточное строение.

Вирусы — возбудители заболеваний

Вирусы способны поражать различные живые организмы. Первым открытым вирусом был вирус табачной мозаики, поражающий растения. Вирусную природу имеют такие заболевания животных и человека, как натуральная оспа, бешенство, энцефалиты, лихорадки, инфекционные гепатиты, грипп, корь, бородавки, многие злокачественные опухоли, СПИД и др. Кроме того, вирусы способны вызывать генные мутации.

Заболевания у животных    • Бруцеллез
   • Лейкоз
   • Ящур
   • Инфекционная анемия лошадей
   • Рак крови кур
   • Чума у свиней и птиц. И другие
Заболевания у растений    • Табачная мозаика
   • Карликовость
   • Желтая сеть
   • Пятнистая мозаика
Заболевания у человека    • Оспа
   • Гепатит
   • Энцефалит
   • Краснуха
   • Бешенство
   • Грипп
   • Корь
   • Полиомиелит
   • Паротит (свинка)
   • СПИД и др.

Вирус, вызывающий заболевание СПИДом (синдром приобретённого иммунодефицита), поражает клетки крови, обеспечивающие иммунитет организма. В результате больной СПИДом может погибнуть от любой инфекции. Вирусы СПИДа могут проникнуть в организм человека во время половых сношений, во время инъекций или операций при несоблюдении условий стерилизации. Профилактика СПИДа заключается в избегании случайных половых связей, использовании презервативов, применении одноразовых шприцев.

Это конспект по теме «НЕКЛЕТОЧНЫЕ. Вирусы и фаги». Выберите дальнейшие действия:

  • Перейти к следующему конспекту: Прокариоты: ЦАРСТВО БАКТЕРИИ
  • Вернуться к списку конспектов по Биологии.
  • Проверить знания по Биологии.

Враги

Оккупанты — все те, кто внедряется в наш организм, паразитирует на нём и приводит к ангине, туберкулёзу, чуме, холере и многим другим заболеваниям.

Пятая колона — некоторые бактерии, обитающие в нашем теле или на коже, в обычной ситуации могут быть вполне безвредными. Но когда организм ослаблен, они коварно поднимают восстание и переходят в наступление. Их ещё называют условно-патогенными штаммами.

Защитные крепости — колонии бактерий, которые покрывают себя слизью и плёнками, предохраняющими от действия препаратов.

Бронированная пехота — среди бактерий, устойчивых к антибиотикам, есть такие, которые умеют делать свои внешние оболочки непроницаемыми для молекул лекарств. Мощь пехоты скрыта в липополисахаридном слое. После гибели бактерий этот слой из жиров и сахара попадает в кровь и может вызвать воспаление или даже септический шок.

Тренировочные базы — ситуации, в которых выживают самые устойчивые и опасные штаммы. Такой тренировочной базой для бактериального спецназа может служить организм человека, который нарушает курс приёма антибиотиков.

Химическое оружие — некоторые бактерии научились вырабатывать вещества, которые разлагают лекарства, лишая их целебных свойств. Например, ферменты из группы бета-лактамаз блокируют действие антибиотиков из группы пенициллинов и цефалоспоринов.

Маскировка — микробы, меняющие внешнюю оболочку и белковый состав так, что лекарства их «не замечают».

Троянский конь — некоторые бактерии используют особые приёмчики для поражения врага. Например, возбудитель туберкулёза (Mycobacterium tuberculosis) способен забираться внутрь макрофагов — иммунных клеток, которые отлавливают и переваривают блуждающих болезнетворных бактерий.

Суперсолдаты — этим всесильным бактериям не страшны почти никакие лекарства.

Рекомендации ВОЗ

Как рождаются супермикробы

Одноклеточные существа начали осваивать планету первыми (3, 5 миллиарда лет назад) — и непрерывно воевали друг с другом. Потом появились многоклеточные организмы: растения, членистоногие, рыбы… Те, кто сохранил одноклеточный статус, задумались: а что, если покончить с междоусобицей и начать захват новых территорий? Внутри многоклеточных безопасно и много еды. В атаку! Микробы перебирались из одних существ в другие, пока не добрались до человека. Правда, если одни бактерии были «хорошими» и помогали хозяину, то другие только причиняли вред.

Люди противостояли этим «плохим» микробам вслепую: вводили карантин и занимались кровопусканием (долгое время это был единственный способ борьбы со всеми болезнями). И только в XIX веке стало ясно, что у врага есть лицо. Руки стали мыть, больницы и хирургические инструменты — обрабатывать дезинфицирующими средствами. После открытия антибиотиков казалось, что человечество получило надёжное средство борьбы с инфекциями. Но бактерии и другие одноклеточные не захотели покидать тёплое местечко и стали приобретать устойчивость к лекарствам.

Супермикроб может по-разному противостоять антибиотику. Например, он способен вырабатывать ферменты, которые разлагают препарат. Иногда ему просто везёт: в результате мутаций становится неуязвимой его мембрана — оболочка, по которой раньше лекарства наносили сокрушительный удар. Устойчивые бактерии рождаются по-разному. Иногда в результате горизонтального переноса генов вредные для человека бактерии заимствуют у полезных средства защиты от лекарств.

ТОП 7 фактов о вирусах убивающих бактерии — бактериофагах

Ещё одно, более реалистичное изображение метициллин-резистентного золотистого стафилококка (MRSA). С каждым годом он распространяется всё шире, особенно внутри больниц и среди людей с ослабленным иммунитетом. По некоторым данным, в США этот микроб ежегодно убивает около 18 тысяч человек (точное число заболевших и умерших определить пока невозможно). Фото: «Кот Шрёдингера»

Порой человек сам превращает организм в центр по тренировке бактерий-убийц. Допустим, мы лечим пневмонию с помощью антибиотиков. Врач предписал: принимать лекарство нужно десять дней. Но на пятый всё проходит и мы решаем, что хватит травить организм всякой гадостью и прекращаем приём. К этому моменту мы уже перебили часть бактерий, наименее устойчивых к препарату. Но самые крепкие остались живы и получили возможность размножаться. Так, под нашим чутким руководством заработал естественный отбор.

«Лекарственная устойчивость является естественным явлением эволюции. Под воздействием противомикробных препаратов наиболее чувствительные микроорганизмы погибают, а резистентные остаются. И начинают размножаться, передавая устойчивость своему потомству, а в ряде случаев и другим микроорганизмам», — поясняет Всемирная организация здравоохранения.

— Возникновению лекарственной устойчивости способствует то, что многие антибиотики можно купить в аптеке без рецепта врача. Да и сами врачи часто перестраховываются и необоснованно выписывают эти препараты. Допустим, поднялась у человека температура  — ему тут же антибиотики дают, не сделав анализы и не разобравшись, что её вызвало, — рассказывает профессор ММСУ Юрий Венгеров (врач-инфекционист, доктор медицинских наук, соавтор книг «Инфекционные и паразитарные болезни», «Заразные болезни», «Тропические болезни. Руководство для врачей», «Лекции по инфекционным болезням»). — Особенно активно селекция микробов происходит в больницах. Там контактируют люди с разными инфекциями, там принимают много антибиотиков. В итоге сейчас стала широко распространятся больничная пневмония и другие внутрибольничные инфекции. Речь идёт не только о бактериальных заболеваниях, но и, например, о грибковых. Среди грибов уже 30% приобрели устойчивость к лекарствам.

Общие данные

Прежде чем рассмотреть представителей вирусов – бактериофагов, — ознакомимся с общими сведениями о данном царстве таксономической иерархии.

Вирусная частичка имеет мельчайшие размеры (20-300 нм) и симметричное структурирование. Строится из постоянно повторяющихся компонентов. Все организмы вирусной природы являются фрагментом РНК или ДНК, заключаются в особую оболочку из белка, называемую капсидом. Они не обладают способностью самостоятельно функционировать и поддерживать жизнедеятельность, находясь вне другой клетки. Проявление свойств живых существ им присуще лишь после внедрения в другой организм, при этом сам вирус будет использовать ресурсы захваченной им клетки для поддержания стабильности в собственном состоянии. Из этого следует, что данный домен таксономии представлен в виде паразитической, внутриклеточной формы жизни. Существуют вирусы, захватывающие участки мембран клетки, в которой они развивались и жили. Они образуют вокруг таких мест еще одну оболочку, покрывающую капсид.

ТОП 7 фактов о вирусах убивающих бактерии — бактериофагах

Как правило, вирусы образуют связь с поверхностью клетки, в которой они паразитируют. Далее вирус проникает внутрь и начинает поиск конкретной структуры, которую он способен поразить. Например, возбудители гепатита функционируют и обитают лишь в клеточных единицах печени, а паротит старается проникнуть в околоушные железы.

ДНК (РНК), принадлежащая вирусу, попав внутрь клетки-носителя, начинает взаимодействовать с аппаратом генетической наследственности так, что сама клетка начинает неконтролируемый процесс синтеза специфического ряда белков, зашифрованных в нуклеиновой кислоте самого возбудителя болезни. Далее происходит репликация, выполняемая непосредственно уже самой клеткой, и таким образом начинается процесс сборки новой вирусной частички.

Фаготерапия — маленькие помощники при серьезных инфекциях

На первый взгляд кажется странным, что вирус может быть использован для лечения! Но сегодня большое количество серьезных, гнойных и опасных для жизни инфекций лечатся фагами – вирусами, атакующими бактерии.

По спектру действия, фаги бывают:

  • моновалентные – поражают бактерии определенного типа;
  • типовые – действуют против штаммов или группы бактерий одного вида;
  • поливалентные – разрушают бактерии целого рода;
  • комбинированные – содержат фаги к нескольким возбудителям, действуют против микробных ассоциаций.

Препараты, содержащие фаги, выпускают в виде мазей, таблеток, суспензий, аэрозолей или свечей. Но чаще всего бактериофаги назначают в жидкой форме. Раствором орошают воспаленную полость органа, смазывают им рану, принимают внутрь или вводят внутривенно.

При лечении бактериофагами важен один нюанс. Самостоятельно подобрать препарат Вы не сможете, поскольку каждый «коктейль» из бактериофагов чувствителен только к определенным группам бактерий, штаммам, и абсолютно неэффективен, если у Вас выявили другие варианты того же вида. Если врач решит назначить Вам фаготерапию, то сперва у Вас возьмут анализы, чтобы выявить возбудителя и подобрать к нему «пожирателя».

В зависимости от воспаленного органа, Вам потребуется сдать следующие анализы:

  • анализ крови;
  • анализ мочи;
  • копрологическое исследование;
  • исследование мокроты;
  • мазок с кожи или слизистой оболочки.

Взятый материал осматривают под микроскопом, а затем делают посев на питательную среду. Когда бактериальная колония начинает расти, лаборант уточняет вид возбудителя, и добавляют в среду фаги. Если среда очистилась от возбудителей, значит фаг подобран верно, а лечение будет эффективным.

С помощью бактериофагов лечат инфекции, вызванные следующими бактериями:

  • кишечная палочка;
  • стафилококк;
  • стрептококк;
  • синегнойная палочка или псевдомонада;
  • клебсиелла;
  • протей;
  • энтерококки;
  • возбудители дизентерии и сальмонеллеза.

Иногда перед врачами даже не стоит выбор между антибиотиком и бактериофагом. В последние годы регистрируются вспышки кишечных инфекций, при которых ни один из антибиотиков не может помочь.

Еще одной всемирной проблемой медицины являются псевдомонады. Самый распространенный вид псевдомонад – синегнойная палочка. Она часто вызывает внутрибольничную инфекцию или воспаление дыхательных путей, легких, среднего уха, мочевыводящих путей. Палочка устойчива не только к антибиотикам, но и к дезинфицирующим средствам, однако ее успешно уничтожают бактериофаги.

Фаготерапия показана при следующих болезнях:

  • кишечная инфекция;
  • инфекция дыхательных путей;
  • пневмония и воспаление плевры;
  • гнойная инфекция кожи;
  • гнойная хирургическая инфекция;
  • инфицирование послеоперационной раны;
  • абсцесс легкого;
  • паратонзиллярные гнойники;
  • поддиафрагмальный гнойник;
  • инфекция среднего уха;
  • воспаление околоносовых пазух;
  • кишечный дисбактериоз;
  • перитонит;
  • остеомиелит;
  • инфекционно-аллергический ринит, фарингит, дерматит и конъюнктивит;
  • инфекция желудочно-кишечного тракта;
  • холециститы;
  • воспаление спинномозговой оболочки;
  • любая гнойная инфекция с высоким риском заражения крови;
  • мочеполовая инфекция;
  • циститы;
  • пиелонефриты;
  • ожоги и травмы.

Бактериофаги применяют не только у взрослых, но и у новорожденных при воспалительных болезнях и высоком риске заражения крови.

Враг победил?

Всемирная организация здравоохранения периодически публикует панические заявления: мол, антибиотики первого ряда перестают действовать, более современные тоже близки к капитуляции, а принципиально новые препараты пока не появились. Война проиграна?

— Бороться с микробами можно двумя способами, — говорит биолог Денис Кузьмин (кандидат биологических наук, сотрудник учебно-научного центра ИБХ РАН). — Во-первых, искать новые антибиотики, воздействующие на конкретные организмы и мишени, ведь именно антибиотики «большого калибра», поражающие разом целый букет бактерий, вызывают ускоренный рост резистентности. Например, можно конструировать лекарства, которые начинают действовать только при попадании внутрь бактерии с определённым обменом веществ. Причём производителей антибиотиков — микробов-продуцентов — нужно искать в новых местах, активнее задействовать природные источники, уникальные географические и экологические зоны их обитания. Во-вторых, следует разрабатывать новые технологии получения, культивирования продуцентов антибиотиков.

Эти два способа уже реализуются. Разрабатываются новые методы поиска и проверки антибиотиков. Микроорганизмы, которые могут стать оружием нового поколения, ищут повсюду: в гниющих растительных и животных остатках, иле, озёрах и реках, воздухе… Например, учёным удалось выделить антимикробное вещество из слизи, которая образуется на коже лягушки. Помните древнюю традицию класть лягушку в крынку с молоком, чтобы оно не скисало? Сейчас этот механизм изучили и пытаются довести до медицинской технологии.

ТОП 7 фактов о вирусах убивающих бактерии — бактериофагах Роботы научились питаться органикой

Ещё пример. Совсем недавно российские учёные из НИИ по изысканию новых антибиотиков им. Г.Ф. Гаузе исследовали жителей съедобных грибов и нашли несколько потенциальных поставщиков новых лекарств.

Другим путём пошли учёные из Новосибирска, работающие в российско-американской лаборатории биомедицинской химии ИХБФМ СО РАН. Им удалось разработать новый класс веществ — фосфорилгуанидины (выговорить сложно, да и записать нелегко). Это искусственные аналоги нуклеиновых кислот (точнее, их фрагментов), которые легко проникают в клетку и вступают во взаимодействие с её ДНК и РНК. Такие фрагменты можно создавать под каждый конкретный патоген на основе анализа его генома. Возглавляет проект американец Сидней Альтман (лауреат Нобелевской премии по химии 1989 года (вместе с Томасом Чеком). Профессор Йельского университета. В 2013-м получил российский мегагрант и стал работать в Институте химической биологии и фундаментальной медицины СО РАН).

Но самые популярные направления поиска средств против инфекций — это бактериофаги и антимикробные пептиды.

Роль бактериофагов в биосфере

Бактериофаг ϕpp2 патогенных вибрионов V. parahaemolyticusи V. alginolyticus

Бактериофаги представляют собой наиболее многочисленную, широко распространённую в биосфере и, предположительно, наиболее эволюционно древнюю группу вирусов. Приблизительный размер популяции фагов составляет более 1030 фаговых частиц.

В природных условиях фаги встречаются в тех местах, где есть чувствительные к ним бактерии. Чем богаче тот или иной субстрат (почва, выделения человека и животных, вода и т. д.) микроорганизмами, тем в большем количестве в нём встречаются соответствующие фаги. Так, фаги, лизирующие клетки всех видов почвенных микроорганизмов, находятся в почвах. Особенно богаты фагами чернозёмы и почвы, в которые вносились органические удобрения.

Бактериофаги выполняют важную роль в контроле численности микробных популяций, в автолизе стареющих клеток, в переносе бактериальных генов, выступая в качестве векторных «систем».

Действительно, бактериофаги представляют собой один из основных подвижных генетических элементов. Посредством трансдукции они привносят в бактериальный геном новые гены. Было подсчитано, что за 1 секунду могут быть инфицированы 1024 бактерий. Это означает, что постоянный перенос генетического материала распределяется между бактериями, обитающими в сходных условиях.

Высокий уровень специализации, долгосрочное существование, способность быстро репродуцироваться в соответствующем хозяине способствует их сохранению в динамичном балансе среди широкого разнообразия видов бактерий в любой природной экосистеме. Когда подходящий хозяин отсутствует, многие фаги могут сохранять способность к инфицированию на протяжении десятилетий, если не будут уничтожены экстремальными веществами либо условиями внешней среды.

Значение

Строение вирусов на примере бактериофага может нам о многом сказать, особенно для взаимодействия с другой информацией, которой располагает о них человек. Например, они являются, предположительно, самой древней формой вирусных частиц. Количественный анализ указывает нам на то, что их популяция имеет более 1030 частиц.

В природе их можно обнаружить там же, где обитают и бактерии, к которым они могут проявлять чувствительность. Так как рассматриваемые организмы определяются по месту обитания, предпочтениями бактерий, которых они поражают, то, следовательно, лизирующие почвенных бактерий (фаги) будут жить в почве. Чем больше в субстрате содержится микроорганизмов, тем больше там и необходимых фагов.

В действительности каждый бактериофаг воплощает в себе одну из основных элементных единиц генетической подвижности. Используя трансдукцию, они обуславливают возникновение новых генов в наследственном материале бактерии. За секунду может произойти инфицирование около 1024 бактериальных клеток. Такая форма ответа на вопрос о том, какие вирусы называются бактериофагами, открыто показывает нам способы распределения наследственной информации, происходящие между бактериальными организмами из общей среды обитания.

Строение бактериофагов

ТОП 7 фактов о вирусах убивающих бактерии — бактериофагахВ отличие от вирусов животных и растений бактериофаг имеет более сложное и более впечатляющее строение. Строение некоторых фагов чем-то напоминает строение космического корабля. Генетическая информация данного вируса (это ДНК или РНК) заключена в капсиде – белковой оболочке. Капсид или головка имеет разную форму (шестигранная, овальная, круглая, призматическая). Как видно из рисунка под головкой расположен воротничок. Еще ниже, под воротничком расположен полый стержень, который заключен в чехол. Чехол похож на пружину и устроен таким образом, что при надобности может сокращаться (сжиматься). Под полым стержнем и чехлом расположена базальтовая пластина шестиугольной формы с короткими выступами (шипами). Также от базальтовой пластины отходят нитевидные образования (фибриллы).

Размеры бактериофагов бывают разными, хотя их относят к вирусам, которые имеют средние размеры.

Взаимодействие бактериофага с бактериальной клеткой

Большинство бактериофагов имеют сократительный чехол. У таких фагов механизм проникновения в клетку отличается от других вирусов. Они осаждаются на поверхности бактериальной клетки с помощью отростков (фибрилл) и через шипы выделяется особый фермент – лизоцим, который разрушает мембранную стенку клетки бактерии. После этого чехол сокращается и его внутренний полый стержень как игла проникает в клетку. Сразу, после проникновения стержня в клетку нуклеиновая кислота (генетическая информация) через отверстие полого стержня впрыскивается в цитоплазму бактериальной клетки. Сам бактериофаг после передачи наследственной информации в отличие от вирусов растений и животных остается вне клетки. Через 30-40 минут после проникновения нуклеиновой кислоты в цитоплазму клетки  происходит синтез новых 200 фаговых единиц, которые своим присутствием увеличивают внутриклеточное давление и разрушают мембраны клетки.

Среда обитания фагов

В окружающей нас природе там, где есть бактерии, обитают и бактериофаги.

Практически все болезнетворные бактерии человека и животных содержат эти микроорганизмы. Следует также отметить, что бактериофаги присущи и у непатогенных микробах. К таким микробам относят молочнокислые бактерии, азотобактерии, бактерии лучистых грибов (на основе их готовят антибиотики), клубеньковые бактерии.

Классификация бактериофагов

В настоящее время обнаружено и исследовано большинство бактериофагов. Их различают по типу нуклеиновой кислоты, по структурной организации и форме, а также по характеру взаимодействия с клеткой бактерии. По этим признакам их разделили на 13 семейств, более чем на 140 родов.

История открытий бактериофагов

Данные вирусы впервые обнаружил в 1896 году британский бактериолог Эрнст Ханкин. После открытия вирусов, которые имеют свойство разрушать бактерии, бактериофагами заинтересовались ученные во многих странах мира. Российский ученым Николай Гамалея в 1898 предложил использовать их при лечении ран и различных инфекционных заболеваний. Вплоть до 1940 года в лабораториях всего мира велись интенсивные исследования и практическое применение этих микроорганизмов. Затем исследования по изучению свойств бактериофагов прекратились и ушли в забытье кроме Советского Союза. На территории Грузии был создан современный институт, который до настоящего времени исследует бактериофаги.  Мировая медицина на какое-то время утратила интерес к этим вирусам в связи с появлением антибиотиков. Но постепенно процесс исследования и применения бактериофагов во всем мире возобновляется.

Лечение бактериофагами

Антибиотики не всегда эффективно работают, кроме болезнетворных бактерий убивают и полезные, таким образом, разрушая микрофлору кишечника. Многие болезнетворные бактерии адаптировались к действию антибиотиков, выработали устойчивость к их химическому воздействию. Другое дело бактериофаги. При правильном применении этих микроорганизмов разрушаются только вредные болезнетворные микробы, не нарушается микрофлора кишечника, выздоровление наступает быстро и без каких–либо нежелательных последствий.  В медицинских учреждениях, после соответствующих анализов, теперь назначают пациентам коктейли содержащие бактериофаги. 

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: