Что изучает физика?

Что изучает физика?

Что изучает физика?
СОДЕРЖАНИЕ
0
0
14 февраля 2020

Явления неживой природы

Окружающий человека мир постоянно меняется. Изменения в неживой природе называются физическими явлениями. Летит птица или ползет гусеница, сверкает молния, гремит гром, идет дождь, река несет свои воды мимо берегов, падает с дерева листок, просыпается вулкан, ветер поднимает пыль на дороге, кипит вода в чайнике, тает снег и много-много другого происходит вокруг. (Если нужно рассмотреть изменения, происходящие в живом организме птицы или гусеницы, то этим займутся другие науки, например, биология, зоология).

Спящий вулкан ()

Летящий самолёт (Источник unsplash.com)

Полярное сияние (Источник unsplash.com)

Существует несколько видов физических явлений.

  • Механические – явления, связанные с движением. Летит самолет, бежит спортсмен, едет автомобиль. Звук — тоже движение колеблющихся тел;
  • Тепловые – процессы, которые связаны с температурой тел. Нагревание воздуха в доме от батареи, горение дров в костре, образование льда на речке. Вот примеры тепловых явлений;
  • Электрические – явления, обусловленные существованием в природе заряженных частиц. Например, работа электроприборов, молния, полярное сияние, искорки вокруг синтетической одежды в темноте;
  • Магнитные – явления, связанные с действием магнита на некоторые тела. Стрелка компаса показывает на Юг и на Север, потому что Земля – это огромный магнит. В школе на уроках физики демонстрируют полосовой и дугообразный магниты. Электрические и магнитные явления тесным образом связаны друг с другом, поэтому их называют электромагнитными;
  • Оптические (световые) явления – частный случай электромагнитных изменений. Солнечный «зайчик», радуга, зеркальное отражение – все это небольшая частица многочисленных явлений оптики.

Многие процессы имеют сложный характер. Например, вспышка молнии – это одновременно и электрическое, и магнитное, и оптическое явление.

Треугольники малые и большие: изменение электронного взаимодействия в кристалле за счет температуры

Вы когда-нибудь пытались объяснить трехлетнему ребенку, что такое атомы? Нет? И правильно, ибо впоследствии ребенок будет бегать по всему дому, детской площадке и магазину, тыкать пальцем на любой предмет и спрашивать «И тут тозе атомы?». Если же серьезно, любопытство, присущее детям, это то, что часто становится движущей силой многих открытий взрослых дядь и теть в белых халатах. Возвращаясь к атомам, все мы знаем, что они являются основными строительными кирпичиками всего, что нас окружает, и нас в том числе. Цементом, связывающим атомы между собой, являются заряженные частицы (ядра или электроны). Разные вещества формируются за счет разных вариантов взаимодействия (связи) электронов. Ученые из Нагойского университета (Япония) обнаружили, что охлажденный до -58 °C оксид вольфрама цезия (CsW2O6) демонстрирует необычную связь электронов, которую ранее обнаруживали исключительно в триводородных ионах, найти которые можно в межзвездном пространстве. Как подобная связь электронов влияет на свойства материала, в чем ее уникальность и что это значит для будущих исследований в области материаловедения? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

В черном-черном океане живет черная-черная рыба с альбедо кожи 0.5%

Черным океан мы назвали потому, что рыба живет на большой глубине, куда практически не проникают солнечные лучи. Там царит вечная ночь. А рыба реально черная — поверхность тела поглощает 99,5% света.
На фото рыба не кажется такой уж черной, потому что вспышки камеры очень яркие. Даже 0,5% отраженного света хватило, чтобы увидеть рыбку во всей красе.
Природа ничего не делает просто так. Некоторые существа, проживающие на дне океана, люминесцируют, привлекая жертв, плывущих на свет. Это разумный способ выживания. Черная рыба использует свою расцветку для того, чтобы спрятаться от хищников. Это альтернативный способ выжить.

Точечная сварка под микроскопом

Tutorial

Хомяки приветствуют вас, друзья!
Сегодняшний пост будет посвящен аппарату для точечной контактной сварки аккумуляторов типа 18650 и прочих. В ходе соберем такое устройство, разберем основные принципы его работы и детально изучим сваренные места под микроскопом. Аккумуляторам сегодня придётся нелегко. Казалось бы сварочный аппарат, который в буквальном смысле состоит из одного трансформатора и контроллера, что тут может пойти не так?!
Представьте себе, что одним прекрасным утром у вас сдох шуруповёрт. Крутить шурупы отверткой не царское дело, потому нужно решать проблему. Виновниками этого происшествия стали никелевые аккумуляторы, которые преждевременно отправились в Вальхаллу пить вино и сражаться на мечах. На смену им пришли компактные, высокотоковые литий-ионные аккумуляторы, которые по характеристикам в разы превосходят своих предшественников.

Механика в физике

Все находится в движении. Даже те предметы, которые на данный момент в абсолютном покое. Как? Очень просто, молекулы и атомы все равно в движении, даже в неподвижном теле. Так что изучает механика в физике? Любое движение, нахождение тела в пространстве. Благодаря этому разделу физики многое в жизни человека имеет свой смысл. Например, с какой скоростью нужно ехать на автомобиле, чтобы вовремя прибыть туда, куда нужно, учитывая дорожные обстоятельства. Механика, кстати, помогает в спорте, таком как бильярд, лыжи, биатлон, теннис и даже гимнастика. Механика изучает ещё и поведение тел в пространстве, дает возможность предугадать, что будет. Например, все знают, что если кружку уронить на кафельный пол, то она точно разобьется, а при падении на диван уцелеет.

Механика имеет несколько разделов. Что изучает динамика в физике? Те примеры, что перечислены выше, прекрасно описывают то, зачем нужен этот раздел. Здесь учащимся предстоит решать задачи, чтобы иметь представление о том, как поведут себя тела в том или ином случае.

Готовимся решить самые трудные задачи физики

Даже начиная с очень простых и скучных вопросов физики, можно быстро прийти к самым экзотическим явлениям и проблемам. В части VI приведены 10 наиболее интересных фактов из специальной теории относительности Эйнштейна и 10 наиболее интересных проблем современной физики.

Альберт Эйнштейн является одним из наиболее известных и талантливых физиков. Для многих людей он является типичным гением, который предложил совершенно необычный взгляд на природу и заглянул в самые темные уголки наших представлений о природе.

Но что конкретно сделал Эйнштейн? Что означает его знаменитая формула Е=шс2? Означает ли это эквивалентность массы и энергии, т.е. что можно преобразовать вещество в энергию и энергию обратно в вещество? Да, конечно, означает.

READ  Географические термины и понятия. географические определения

Это довольно неожиданный физический факт, с которым нам не приходится сталкиваться в повседневной жизни. Но на самом деле мы сталкиваемся с ним каждый день. Для генерации своего теплового излучения Солнце должно ежесекундно преобразовывать в энергию около 4,79 млн т вещества!

Согласно теории Эйнштейна, еще более странные явления происходят при достижении скорости света.

“Посмотри на этот звездолет”, — скажете вы, глядя на ракету, пролетающую рядом почти со скоростью света. — Похоже, что вдоль направления движения он стал вдвое короче во время этого полета, чем в состоянии покоя.”

“Какой еще звездолет?” — спросят ваши друзья. — Он пролетел слишком быстро, и мы ничего не заметили.”

“Время, измеренное на этом звездолете, течет медленнее, чем время на Земле. По нашим меркам требуется около 200 лет, чтобы достичь ближайшей звезды, а по меркам экипажа звездолета потребуется всего 2 года.”

“Как это понять?” — спросят все.

Физика окружает нас повсюду— в любом известном нам месте. Хотите испытать свои возможности, тогда физика — именно то, что вам нужно. В конце книги перечислено несколько самых сложных проблем современной физики: возможное существование чревоточин в пространстве и строение черной дыры, которая притягивает все, включая свет. Узнайте об этом побольше и наслаждайтесь знаниями!

Что изучает физика[править]

Фи́зика — область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Более просто, физика — это наука о природе в самом общем смысле. Законы физики лежат в основе всего естествознания. Физика изучает вещество (материю) и энергию, а также фундаментальные взаимодействия природы, управляющие движением материи. Физические законы являются общими для всех материальных систем, поэтому физику можно называют «фундаментальной наукой».

Термин «физика» впервые появился в сочинениях Аристотеля. Первоначально термины «физика» и «философия» были синонимичны, поскольку обе дисциплины пытаются объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика выделилась в отдельное научное направление.

В основе своей физика — экспериментальная наука: все её законы и теории основываются и опираются на опытные данные. Однако зачастую именно новые теории являются причиной проведения экспериментов и, как результат, лежат в основе новых открытий. Поэтому принято различать экспериментальную и теоретическую физику.

Экспериментальная физика исследует явления природы в заранее подготовленных условиях. В ее задачи входит обнаружение ранее неизвестных явлений, подтверждение или опровержение физических теорий. Именно несогласие с результатом эксперимента является критерием ошибочности физической теории, или более точно, неприменимости теории к нашему миру. Обратное утверждение не верно: согласие с экспериментом не может быть доказательством правильности (применимости) теории. То есть главным критерием жизнеспособности физической теории является проверка экспериментом. Эта очевидная сейчас роль эксперимента была осознана лишь Галилеем и более поздними исследователями, которые делали выводы о свойствах мира на основании наблюдений за поведением предметов в специальных условиях, то есть ставили эксперименты. Заметим, что это совершенно противоположно, например, подходу древних греков: источником истинного знания об устройстве мира им казалось лишь размышление, а «чувственный опыт» считался подверженным многочисленным обманам и неопределённостям, а потому не мог претендовать на истинное знание.

В задачи теоретической физики входит формулирование общих законов природы (физических теорий) и объяснение на основе этих законов различных явлений, а также предсказание до сих пор неизвестных явлений. Верность любой физической теории проверяется экспериментально: если результаты эксперимента совпадают с предсказаниями теории, она считается адекватной (достаточно точно описывающей данное явление). Теоретическая физика — способ познания природы, при котором тому или иному кругу природных явлений сопоставляется какая-либо математическая модель.

Продуктом теоретической физики являются физические теории. Поскольку теоретическая физика работает именно с математическими моделями, крайне важным требованием является математическая непротиворечивость завершенной физической теории. Вторым обязательным свойством (отличающим теоретическую физику от математики) является возможность получать внутри теории предсказания для поведения природы в тех или иных условиях (то есть предсказания для экспериментов) и, в тех случаях, где результат эксперимента уже известен, давать согласие с экспериментом. Это главные критерии построения физической теории.

Физические теории имеют свои границы применимости, и если они не в состояние описать существующие экспериментальные данные, то значит в этих рамках они не применимы к реальности, и необходимо искать новые теории.

При изучении любого явления роль экспериментальной и теоретической физики одинаково важны.

В современном мире значение физики чрезвычайно велико. Все то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров.

Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика еще очень далека от того, чтобы объяснить все явления природы.

Наблюдения и опыты

Человеку свойственны любопытство, интерес. Люди всегда пытались понять и объяснить окружающий их мир, но объяснение должно быть научно, т.е. должно опираться на физические теории и законы. Как же открываются законы, и создаются теории? Первый этап поиска научной истины называется научным наблюдением.

Процесс наблюдения (Источник unsplash.com)

Процедура наблюдения содержит разнообразие методов, приводящих к истине:

()

Ученые тщательно наблюдают за определенным явлением, изучают его закономерности, формы проявления. Солнечные затмения, землетрясения, грозы, появления необычных небесных тел — комет в далеком прошлом пугали людей, заставляли их задумываться о существовании потусторонней силы. Ученые с помощью наблюдений определили причины и условия протекания этих процессов и заставили реально посмотреть на эти природные «чудеса».

Но для полного понимания происходящего нужно перейти ко второму этапу – опытному. Опыт позволяет воссоздать природное явление в лаборатории ученого.

READ  Страны мира

()

Лишь после этого создается теория – третий заключительный этап поиска истины.

Работая над созданием теории, ученые вводят различные физические величины, которые характеризуют изучаемое явление, например, время, длина, масса. Правильное и точное измерение величин играет большую роль в выработке правильного вывода. Для этого нужны специальные приборы: часы, линейка или сантиметровая лента, весы и т. д.

Между измеренными величинами устанавливаются определенные связи, которые являются закономерными и называются физическими законами. Законы, описывающие общую группу явлений, образуют физическую теорию.

Вот пример рождения одной из теорий. На что реагирует человек прежде всего? Конечно, на движущиеся предметы. Наблюдая за движением птиц, животных, небесных тел, за падением капель дождя и снега, человек задумывается о причинах, которые заставляют двигаться тела. Он сравнивает движение разных тел, находит сходство и различие в их движении.

Ученые, жившие еще до нашей эры, Аристотель, Архимед и другие положили начало учению о движении, основываясь на наблюдениях. Но одни наблюдения не могли точно и верно объяснить движение тел.

В XVI – XVII веках ученые переходят к экспериментальным методам. Результатом опытов Х. Гюйгенса, Г. Галилея, Р. Декарта, И. Кеплера и многих других ученых стали законы, описывающие падение тел, движение планет Солнечной системы, поведение тел при столкновениях.

Достигнутые опытным путем результаты, получили завершение в работах великого английского ученого-физика Исаака Ньютона (1643 — 1727 г.г.), создавшего теорию классической механики, науки о движении. Но и гениальный Ньютон не до конца рассмотрел особенности движения тел. В XX веке Альберт Эйнштейн (1879 – 1955 г.г.) создает теорию движения, которая механику Ньютона включает в себя как частный случай.

, , ,  

И это еще не все. Пока не изучены еще звездные миры, до которых надо добраться. Но как? Это вопрос будущего. И ответ на этот вопрос, может быть, даст еще одна теория движения.

Сложен путь решения загадок, которые ставит перед человеком природа. Но учиться распутывать и разгадывать их нужно правильно, как это делает наука физика:

  • Наблюдение – начало поиска научной истины;
  • Опыт – практическое открытие или подтверждение результатов наблюдений;
  • Научная теория – завершенное доказательство научной истины.

И главная задача физики: открыть физические законы, по которым протекают различные явления; найти закономерности, сравнить и обобщить результаты; объяснить причины явлений и процессов, предположить их развитие; использовать эти законы в жизни и деятельности человека.

Законам физики подчиняется все, что находится во Вселенной.

Основные физические теории

На сегодняшний день существует множество разделов физики, которые охватывают практически все явления природы. Вот основные из них:

  • Классическая механика – раздел физики, который изучает изменения положения тела в пространстве, ищет причины, которые это вызывают. Механика основывается на теории И. Ньютона. Классическая механика делится на статику (изучает равновесие тел), кинематику (изучает геометрию движения тел) и динамику (изучает причины движения тел).
  • Термодинамика – раздел физики, который изучает свойства макроскопических систем, способы и пути трансформации энергии в этих системах. Вся термодинамика делится на равновесную (классическую) и неравновесную.
  • Теория электромагнетизма – изучает взаимодействия между частицами с электрическим зарядом. Сюда входят такие подразделы, как электростатика, электродинамика, магнитная гидродинамика и другие.
  • Квантовая механика – раздел теоретической физики, который описывает физические явления, действие которых сравнимо с очень маленькой величиной – постоянной Планка.
  • Молекулярная физика – раздел, изучающий свойства вещества на уровне молекул и атомов.
  • Теория относительности – это современная теория, которая изучает пространство и время в контексте физических процессов.
  • Ядерная физика – изучает физические свойства радиоактивных веществ.
  • Оптика — раздел физики, изучающий явления, которые связаны с распространением электромагнитных волн, в частности свет, рентген и другие.

Что изучает физика?

Слово «физика» возникло в глубокой древности. Родоначальником физики был ученый Аристотель (Др. Греция 384-322 г.г. до н. э.). Он написал книгу «Физика», посвященную исследованиям природы. Значит, греческое слово «физика» — это наука о природе.

Примеры изучения физики: свет, звук, лёд, радуга (Источник unsplash.com)

Природа — все живое и неживое в окружающем нас мире. Все, что связано с любыми природными объектами, о которых можно судить по ощущениям человека – это материя. В классе – парты, стулья, учебники, карандаши, ручки; в столовой – вкусные обеды и завтраки, аппетитные запахи; на улице – машины, люди, здания, ветер, бегущие после дождя ручейки; дома – знакомые вещи, мебель; в лесу – деревья, кусты, трава, птицы, животные.

Эти и другие предметы называются физическими телами. Тело состоит из вещества. Например, линейка может быть деревянной, стальной, пластмассовой. Поэтому, сталь, дерево, пластмасса – это физические вещества.

Некоторые тела состоят из одного вещества, другие – из нескольких, например, бронза – сплав меди и олова. Тела, состоящие из одного вещества, называются однородными, а из нескольких веществ – неоднородными.

Вещество можно видеть, ощущать, фиксировать при помощи органов чувств. Но существует еще один вид материи, которая регистрируется только приборами. Это поле. Поле определяет притяжение тел к Земле, а планет к Солнцу. Останкинскую телебашню и телевизоры в домах соединяют между собой также физические поля.

Магнитное поле вокруг Земли ()

Понятия «материя» и «поле» более глубоко изучаются в старших классах.

В быту без физики не обойтись

Наверное, лучше начать с бытовых условий, так как люди чаще всего нуждаются именно в еде, воде и комфорте. Каждому человеку нужно знать, что абсолютно все происходит по законам природы. Что изучает физика? 7 класс в школе посвящен первоначальному изучению этого предмета. К сожалению, современная школьная программа составлена так, что учащимся может быть совсем неинтересно. В таком случае все зависит от педагога: приведет ли он массу примеров из жизни и будут ли показаны эксперименты на уроке.

Вернемся к быту и комфорту. Какое отношение физика к ним имеет? С детства всем известно, что вода способна нагреваться, а когда закипит, то идет пар. А в первую морозную ночь лужи замерзают, выпадает снег. Ребенок не может знать, почему так происходит. В школе на уроке физики хороший учитель ответит на подобные вопросы. Но зачем такие знания в жизни? Чтобы не наделать ошибок. Например, поставил шестилетний мальчик чайник на огонь кипятиться и ушел по своим делам, полагая, что водичка нагреется и такой останется до его прихода. Вернется мальчик через пару часов, а у чайника не то что воды, а дна уже нет! Что произошло? Конечно, вода вся выкипела, а дно чайника испортилось. Приготовление любых блюд также не обходится без раздела физики — термодинамики.

READ  Самые дорогие кошки в мире

Наблюдения и опыты в физике

Мы упомянули наблюдения и опыты в физике. Чем же отличаются наблюдения от опытов? Наблюдая, мы можем узнать или предположить нечто новое, но для того, чтобы качественно изучить какое-то явление, нам нужно наблюдать его несколько раз и в разных условиях. Или наоборот, нам необходимо повторить несколько раз одни и те же условия. Для этого ставят опыт, который и отличается от наблюдения тем, что проводится по запланированному плану, с определенной целью и в это время обычно проводят специальные измерения. Например, наблюдая, как падает на землю брошенный мяч, мы можем предположить, что его что-то тянет вниз, но нужно много раз бросить шарики разного веса и размера с разной высоты, чтобы установить закон падения тел, как в свое время это сделал Галилей, бросая шарики со знаменитой наклонной башни. А применив полученные им знания, другие люди смогли достичь значительного прогресса в промышленности и производстве на благо всех людей.

Маленькая реклама: если вам сложно дается физика, то может помочь репетитор по физике 7 класса, обращайтесь к нам — мы подберем вам подходящего репетитора.

Основные теории

Хотя физика имеет дело с разнообразными системами, некоторые физические теории применимы в больших областях физики. Такие теории считаются в целом верными при дополнительных ограничениях. Например, классическая механика верна, если размеры исследуемых объектов намного больше размеров атомов, скорости существенно меньше скорости света, и гравитационные силы малы. Эти теории всё ещё активно исследуются; например, такой аспект классической механики, как теория хаоса был открыт только в XX веке. Они составляют основу для всех физических исследований. В рамках этих теорий М. В. Ломоносов объяснил причины агрегатных состояний веществ (твёрдое, жидкое и газообразное состояния) и разработал теорию теплоты.

Теория Основные разделы Понятия
Классическая механика Законы Ньютона — Лагранжева механика — Гамильтонова механика — Теория хаоса — Гидродинамика — Геофизическая гидродинамика — Механика сплошных сред Вещество — Пространство — Время — Энергия — Движение — Масса — Длина — Скорость — Сила — Мощность — Работа — Закон сохранения — Момент инерции — Угловой момент — Момент силы — Волна — Действие — Размерность
Электромагнетизм Электростатика — Электричество — Магнитостатика — Магнетизм — Уравнения Максвелла — Электродинамика — Магнитная гидродинамика Электрический заряд — Напряжение — Ток — Электрическое поле — Магнитное поле — Электромагнитное поле — Электромагнитное излучение — Сопротивление — Электродвижущая сила
Термодинамика и Статистическая физика Тепловая машина — Молекулярно-кинетическая теория — Неравновесная термодинамика Удельный объём (Плотность) — Давление — Температура — Постоянная Больцмана — Энтропия — Свободная энергия — Термодинамическое равновесие — Статистическая сумма — Микроканоническое распределение — Большое каноническое распределение — Количество теплоты
Квантовая механика Уравнение Шрёдингера — Интеграл Фейнмана — Квантовая теория поля Гамильтониан — Тождественные частицы — Постоянная Планка — Измерение — Квантовый осциллятор — Волновая функция — Нулевая энергия — Перенормировка
Теория относительности Специальная теория относительности — Общая теория относительности — Релятивистская гидродинамика Принцип относительности — 4-вектор — Пространство-время — Световой конус — Мировая линия — Скорость света — Относительность одновременности — Тензор энергии-импульса — Кривизна пространства-времени — Чёрная дыра

А если бы исчезла гравитация

Изучая физику, школьники начинают понимать, что все в мире устроено не просто так. Гравитация наводит на размышления. Что она собой представляет? А ведь благодаря ей мы стоим на земле, а не летаем, как воздушные шарики. Все, что имеет хотя бы малую, но массу, способно падать на землю. Учащимся предложат решить интересные задачи по гравитации.

Исаак Ньютон — великий ученый, открывший, по сути, людям глаза на правду о природе, рассказал о том, что изучает наука физика. Гравитация отсутствует в космосе лишь для человека, искусственных спутников, космических кораблей, но существует для абсолютно всех небесных тел: звезд, галактик, планет и их спутников.

История физики

Становление современной физики прошло множество этапов, каждый из которых вносил что-то новое в физическое знание, модернизировал фундаментальные физические понятия.

Древний период

Основы современной физики зародились еще в 5-6 вв. до н. э. Считается, что сам термин «физика» впервые опубликовал в своих трудах древнегреческий философ Аристотель. Другие греческие философы Евклид и Птолемей создали основы механики, оптики и других разделов современной физики. Большой вклад внесли и индийские ученые. Так, астроном Ариабхата предложил эллиптические модели планетарных систем, а мыслители Дигнага и Дхармакирти положили начало физике элементарных частиц.

Средневековье

В середине XVI века в Европе началась научная революция в связи с изобретением научных методов исследования. Так, в течение следующих 100 лет учёными были разработаны и доказаны основы всей современной фундаментальной физики. Этот период времени начинается работой Николая Коперника, а заканчивается целой плеядой талантливых исследователей: Г. Галилей, И. Кеплер, Б. Паскаль и, конечно, И. Ньютон, который создал основные законы механики.

Переломный момент

В конце XIX — начале XX века вся классическая физика была перевёрнута с ног на голову исследованиями А. Эйнштейна, Э. Резерфорда, Н. Бора. Они сменили механическую парадигму в физике, изобретя теорию относительности и теорию атома.

Современная физика

На сегодняшний день физика по большей частью занимается исследованием фундаментальных законов. Кроме того, акцент сместился на развитие ядерной физики благодаря открытию радиоактивности веществ Анри Беккерелем. Создание квантовой физике дало толчок к активному развитию микроэлектроники и физики твёрдого тела, без которых не представляется существование целых отраслей современной промышленности.

Комментировать
0
0
Комментариев нет, будьте первым кто его оставит

;) :| :x :twisted: :sad: :roll: :oops: :o :mrgreen: :idea: :evil: :cry: :cool: :arrow: :P :D :???: :?: :-) :!: 8O

Это интересно