Процесс клеточного дыхания и его этапы

Что такое клеточное дыхание

Клеточное дыхание — это процесс, посредством которого биохимическая энергия превращается в энергию в АТФ. Это универсальный процесс, наблюдаемый во всех организмах, живущих на земле. Это устраняет углекислый газ и воду как отходы. Углеводы, белки и жиры сначала превращаются в глюкозу, а затем используются в клеточном дыхании. АТФ служит основной валютой клеточной энергии. Клеточное дыхание происходит в три этапа: гликолиз, цикл Кребса и цепь переноса электронов.

гликолиз

Первым этапом клеточного дыхания является гликолиз, при котором глюкоза (С6) расщепляется на две молекулы пирувата (С3). Это происходит в цитоплазме.

Цикл Кребса

Второй этап клеточного дыхания — цикл Кребса. Другими названиями цикла Кребса являются цикл лимонной кислоты и цикл ТСА. Это происходит внутри митохондриальной матрицы у эукариот. Следовательно, две молекулы пирувата импортируются в митохондрии. У прокариот это происходит в самой цитоплазме. Затем пируват подвергается окислительному декарбоксилированию с образованием ацетил-КоА, который, в свою очередь, соединяется с оксалоацетатом (С4), образуя цитрат (С6). Наконец, весь ацетил-КоА превращается в углекислый газ, 6NADH, 2FADH2и 2ATP.

Электронная транспортная цепь

Третьим этапом клеточного дыхания является цепь транспорта электронов. Окислительное фосфорилирование является механизмом цепи переноса электронов, и ферменты в митохондриальных кристах управляют этим. Это помогает в производстве 30 АТФ путем окисления NADH и FADH2, Процесс полного клеточного дыхания показан на Рисунок 1.

Процесс клеточного дыхания и его этапы

Рисунок 1: Клеточное дыхание

Аэробное дыхание

Различные этапы клеточного дыхания у аэробных эукариот происходят

  • в цитоплазме – гликолиз,

  • в матриксе митохондрий – цикл Кребса, или цикл трикарбоновых кислот,

  • на внутренней мембране митохондрий – окислительное фосфорилирование, или дыхательная цепь.

На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.

Суммарные реакции аэробного дыхания выглядит следующим образом.

Гликолиз и цикл Кребса: C6H12O6 + 6H2O → 6CO2 + 12H2 + 4АТФ

Дыхательная цепь: 12H2 + 6O2 → 12H2O + 34АТФ

Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.

Цикл трикарбоновых кислот

Основная статья: Цикл трикарбоновых кислот

Ацетил-КоА под действием цитратсинтазы передаёт ацетильную группу оксалоацетату с образованием лимонной кислоты, которая поступает в цикл трикарбоновых кислот (цикл Кребса). В ходе одного оборота цикла лимонная кислота несколько раз дегидрируется и дважды декарбоксилируется с регенерацией оксалоацетата и образованием одной молекулы ГТФ (способом субстратного фосфорилирования), трёх НАДН и ФАДН2.

Суммарное уравнение реакций:

Ацетил-КоА + 3НАД+ + ФАД + ГДФ + Фн + 2H2O + КоА-SH = 2КоА-SH + 3НАДH + 3H+ + ФАДН2 + ГТФ + 2CO2

У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.

Строение хлоропласта

Это органоид, который обладает формой вытянутого шара. Размер хлоропласта обычно составляет 4-6 мкм, однако в клетках некоторых водорослей можно обнаружить гигантские пластиды – хроматофоры, размер которых достигает 50 мкм.

Этот органоид относится к двухмембранным. Он окружен внешней и внутренней оболочками. Они отделены друг от друга межмембранным пространством.

Внутренняя среда хлоропласта называется «строма». В ней находятся тилакоиды и ламеллы.

Тилакоиды – это плоские дискообразные мешочки из мембран, в которых находится хлорофилл. Именно здесь и происходит фотосинтез. Собираясь в стопки, тилакоиды образуют граны. Количество тилакоидов в гране может варьироваться от 3 до 50.

Ламеллы – это структуры, образованные мембранами. Они представляют собой сеть разветвленных каналов, основная функция которых – обеспечить связь между гранами.

В хлоропластах также содержатся свои рибосомы, необходимые для синтеза белков, и собственные ДНК и РНК. Кроме того, здесь могут находиться включения, состоящие из запасных питательных веществ, в основном крахмала.

Процесс клеточного дыхания и его этапы

Окислительное фосфорилирование

Основные статьи: Окислительное фосфорилирование, Дыхательная электронтранспортная цепь и АТФ-синтаза

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН2, восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т.д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот — в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН2 — 1.5 молекулы.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород.

Анаэробное дыхание

Основная статья: Анаэробное дыхание

Если в электронтранспортной цепи вместо кислорода используется другой конечный акцептор (трёхвалентное железо, нитрат- или сульфат-анион), дыхание называется анаэробным. Анаэробное дыхание свойственно в основном бактериям, которые благодаря этому играют важную роль в биогеохимическом цикле серы, азота и железа. Денитрификация — один из типов анаэробного дыхания — является одним из источников парниковых газов, железобактерии принимают участие в образовании железомарганцевых конкреций. Среди эукариот анаэробное дыхание встречается у некоторых грибов, морских донных беспозвоночных, паразитических червей и протистов — например, фораминифер .

Общее уравнение дыхания, баланс АТФ

Стадия Выход кофермента Выход АТФ (ГТФ) Способ получения АТФ
Первая фаза гликолиза −2 Фосфорилирование глюкозы и фруктозо-6-фосфата с использованием 2 АТФ из цитоплазмы.
Вторая фаза гликолиза 4 Субстратное фосфорилирование
2 НАДН 3 (5) Окислительное фосфорилирование. Только 2 АТФ образуется из НАДН в электронтранспортной цепи, поскольку кофермент образуется в цитоплазме и должен быть транспортирован в митохондрии. При использовании малат-аспартатного челнока для транспорта в митохондрии из НАДН образуется 3 моль АТФ. При использовании же глицерофосфатного челнока образуется 2 моль АТФ.
Декарбоксилирование пирувата 2 НАДН 5 Окислительное фосфорилирование
Цикл Кребса 2 Субстратное фосфорилирование
6 НАДН 15 Окислительное фосфорилирование
2 ФАДН2 3 Окислительное фосфорилирование
Общий выход 30 (32) АТФ При полном окислении глюкозы до углекислого газа и окислении всех образующихся коферментов.

Что такое дыхание

Каждая клетка нуждается в энергии для жизни. Получение энергии происходит при расщеплении органических веществ в процессе дыхания. Такое расщепление происходит под воздействием кислорода и ещё называется окислением. В результате образуются вода, углекислый газ и свободная энергия.

Необходимая растению энергия содержится в химических связях сложных органических веществ. Изначально это энергия солнца, запасённая в сложных молекулах путём фотосинтеза.

Дыхание у растений принципиально не отличается от дыхания животных, или грибов. Какой газ растения выделяют при дыхании, такой же выделяют любые другие организмы. Это углекислый газ.

Рис. 1. Схема дыхания растений.

Известно, что на свету растения выделяют ещё и кислород, но это происходит в результате другого процесса – фотосинтеза.

Дыхание идёт круглосуточно, поэтому образование углекислого газа происходит постоянно. Также постоянно в клетки растений для их нормальной жизнедеятельности должен поступать кислород.

Это же справедливо и для растения в целом.

Таким образом, дыхание включает два процесса:

  • клеточное дыхание;
  • газообмен растения с внешней средой.

Окислительное фосфорилирование

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН 2 , восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т.д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот — в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН 2 — 1.5 молекулы.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород .

Анаэробное дыхание

Если в электронтранспортной цепи вместо кислорода используется другой конечный акцептор (трёхвалентное железо , нитрат — или сульфат -анион), дыхание называется анаэробным. Анаэробное дыхание свойственно в основном бактериям , которые благодаря этому играют важную роль в биогеохимическом цикле серы, азота и железа.

Повторите особенности строения митохондрий, которые вы изучали в предыдущей теме. в клетках каких организмов имеются митохондрии? Для чего они нужны? Из курса химии вспомните, что такое окисление.

Что такое клеточное дыхание

Клеточное дыхание — это совокупность реакций окисления органических веществ кислородом, которые происходят в клетках живых организмов. Оно обеспечивает клетку энергией.

Следует отметить, что клеточное дыхание и легочное дыхание — это не одно и то же. Легочное дыхание — это физиологический процесс, в результате которого определенные газы попадают из воздуха в кровь или из крови в воздух. А клеточное дыхание — это биохимический процесс, совокупность химических реакций в клетках.

Клеточное дыхание состоит из двух этапов. Первый из них (гликолиз) происходит в цитозоле, а второй (кислородный) — в митохондриях. У растений во время клеточного дыхания окисляются органические вещества, синтезированные самим растением, у животных и грибов — вещества, которые организм получает с питанием или которые синтезирует сам.

Биохимические процессы клеточного дыхания

Общая формула биологического окисления выглядит так:

В результате первого этапа этого процесса (гликолиза), который происходит в цитозоле, образуется пируват (пировиноградная кислота). Он транспортируется из цитозоля в матрикс митохондрий, где с помощью ферментов окисляется до углекислого газа и воды. Окисление происходит в несколько этапов, на каждом из которых выделяется энергия. Часть энергии выделяется в виде тепла (45 %), а 55 % запасается в АТФ.

Процесс клеточного дыхания и его этапы

Эффективность клеточного дыхания

Ключевым этапом клеточного дыхания является цикл Кребса (цикл трикарбоновых кислот). Именно в реакциях этого цикла образуются соединения, которые являются источником протонов и электронов для процесса окисления. Клеточное дыхание является чрезвычайно эффективным процессом. Еще на первом этапе клеточного дыхания — гликолизе — из одной молекулы глюкозы клетка получает две молекулы АТФ, а на последующих этапах клеточного дыхания к ним добавляются еще 36 молекул (рис. 15.1).

Клеточное дыхание — это биохимический процесс, который происходит в митохондриях. в ходе этого процесса органические вещества, образовавшиеся при гликолизе, окисляются кислородом, который поступает в клетки из окружающей среды. Часть энергии, которая при этом выделяется, запасается клетками в виде молекул АТФ.

Проверьте свои знания

1. Что такое клеточное дыхание? 2. Где происходит клеточное дыхание? 3. Какие биохимические процессы происходят во время клеточного дыхания? 4*. Сравните процессы клеточного дыхания и обычного горения. Найдите черты сходства и отличия.

Это материал учебника

Фотосинтез и хемосинтез

Фотосинтез — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов.

Хемосинтез — способ автотрофного питания, при котором источником энергии для синтеза органических веществ из CO2 служат реакции окисления неорганических соединений

Обычно все организмы, способные из неорганических веществ синтезировать органические, т.е. организмы, способные к фотосинтезу и хемосинтезу, относят к автотрофам.

К автотрофам традиционно относят растения и некоторые микроорганизмы.

Кратко мы говорили о фотосинтезе в ходе рассматрения строения растительной клетки, давайте разберем весь процесс поподробнее…

Суть фотосинтеза

(суммарное уравнение)

Основное вещество, участвующее в многоступенчатом процессе фотосинтеза — хлорофилл. Именно оно трансформирует солнечную энергию в химическую.

Важно

На рисунке указано схематическое изображение молекулы хлорофилла, кстати, молекула очень похожа на молекулу гемоглобина…

Хлорофилл встроен  в граны хлоропластов:

Световая фаза фотосинтеза:

(осуществляется на мембранах тилакойдов)

  • Свет, попав на молекулу хлорофилла, поглощается им и приводит его в возбужденное состояние — электрон, входящий в состав молекулы, поглотив энергию света, переходит на более высокий энергетический уровень и участвует в процессах синтеза;
  • Под действием света так же происходит расщепление (фотолиз) воды:

 Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре»

2Н+ + 2е— + НАДФ → НАДФ·Н2

НАДФ — это специфическое вещество, кофермент, т.е. катализатор, в данном случае — переносчик водорода.

синтезируется АТФ (энергия)

Темновая фаза фотосинтеза

(протекает в стромах хлоропластов)

собственно синтез глюкозы

происходит цикл реакций, в которых образуется С6H12O6. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; rроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды

Обратите внимание: темновой эта фаза называется не потому что идет ночью — синтез глюкозы происходит, в общем-то, круглосуточно, но для темновой фазы уже не нужна световая энергия. “Фотосинтез — это процесс, от которого в конечной инстанции зависят все проявления жизни на нашей планете”. “Фотосинтез — это процесс, от которого в конечной инстанции зависят все проявления жизни на нашей планете”

“Фотосинтез — это процесс, от которого в конечной инстанции зависят все проявления жизни на нашей планете”.

К.А.Тимирязев.

В результате фотосинтеза на Земле образуется около 150 млрд т органического вещества и выделяется около 200 млрд т свободного кислорода в год.

Кроме того, растения вовлекают в круговорот миллиарды тонн азота, фосфора, серы, кальция, магния, калия и других элементов.

Хотя зеленый лист использует лишь 1-2% падающего на него света, создаваемые растением органические вещества и кислород в целом обеспечивают существование всего живого на Земле.

Хемосинтез

Хемосинтез осуществляется за счет энергии, выделяющейся при химических реакциях окисления различных неорганических соединений: водорода, сероводорода, аммиака, оксида железа (II) и др.

Соответственно веществам, включенным в метаболизм бактерий, существуют:

  • серобактерии — микроорганизмы водоемов, содержащих H2S — источники с очень характерным запахом,
  • железобактерии,
  • нитрифицирующие бактерии — окисляют аммиак и азотистую кислоту,
  • азотфиксирующие бактерии — обогащают почвы, чрезвычайно повышают урожайность,
  • водородокисляющие бактерии

Но суть остается та же — это тоже автотрофное питание , так же запасается энергия  и это запас в виде молекул АТФ. 

Этот тип синтеза используется ТОЛЬКО бактериями.

Хемосинтетики — единственные организмы на земле, не зависящие от энергии солнечного света.

Поэтому бактерии, «практикующие» хемосинтез, могут жить на любой глубине океанов.

По современным оценкам, биомасса «подземной биосферы», которая находится, в частности, под морским дном и включает хемосинтезирующих анаэробных  архебактерий, может превышать биомассу остальной биосферы

Совет

Изучением фотосинтеза и хемосинтеза занимался С. Н. Виноградский  — ученый, который рассматривал влияние микроорганизмов на биосферу (он ввел понятие «экология микроорганизмов»).

Как видите,  фотосинтез и хемосинтез — две формы пластического обмена, при котором из неорганических веществ образуются органические вещества.

  • примеры воспросов ЕГЭ по теме
  • вопросы ОГЭ
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: