Кислородная катастрофа, или кислородная революция в истории Земли
Атмосфера на ранней Земле значительно отличалась от той, которая нам известна сегодня. Считается, что первая атмосфера Земли состояла из водорода и гелия, подобно газообразным планетам и Солнцу. После миллионов лет извержений вулканов и других внутренних земных процессов возникла вторая атмосфера. Эта атмосфера была полна парниковых газов, таких как диоксид углерода, диоксид серы, а также содержала другие типы паров и газов, таких как водяной пар и, в меньшей степени, аммиак и метан.
Бескислородная атмосфера
С возникновение Земли первая комбинация газов была очень негостеприимной для большинства форм жизни. Хотя существует множество теорий, таких как «Теория первичного бульона», «Теория гидротермальных источников» и «Гипотеза панспермии» о том, как началась жизнь на Земле, и они объясняют, что первым организмам, населявшим Землю, не нужен был кислород для существования, поскольку его еще не было в атмосфере. Большинство ученых согласны с тем, что строительные блоки жизни не смогли бы образоваться, если бы в то время в атмосфере присутствовал кислород.
Углекислый газ
Однако растения и другие автотрофные организмы смогли процветать в атмосфере, заполненной углекислым газом. Двуокись углерода является одним из основных реагентов, необходимых для проведения фотосинтеза. С углекислым газом и водой автотрофы могли производить углеводы для получения энергии и выделять кислорода в качестве побочного продукта. После того, как многие растения эволюционировали на Земле, в атмосфере появился свободный кислород.
Предполагается, что ни одно живое существо на Земле в то время не использовало кислород. Фактически, изобилие кислорода было токсичным для некоторых автотрофов, и они вымерли.
Ультрафиолет
Несмотря на то, что кислородный газ не мог использоваться непосредственно живыми существами, кислород не был вредным для организмов, живущих в то время.
Кислородный газ поднимался к вершине атмосферы, где он подвергался воздействию ультрафиолетовых (УФ) солнечных лучей. Это УФ-излучение разделило молекулы двухатомного кислорода и помогло создать озон, который состоит из трех атомов кислорода, ковалентно связанных друг с другом. Озоновый слой помог блокировать некоторые УФ-лучи от поверхности Земли. Это создало более безопасные условия для жизни организмов на суше. До образования озонового слоя жизнь находилась в океанах, где была защищена от суровой жары и радиации.
Первые потребители
С появлением защитного озонового слоя, многие гетеротрофы смогли развиваться. Первыми потребителями стали простые травоядные животные, которые могли питаться растениями, выжившими в атмосфере, насыщенной кислородом. Поскольку на этих ранних стадиях колонизации суши кислород был в больших количествах, многие из предков известных нам сегодня животных, выросли до огромных размеров. Имеются данные о том, что некоторые виды насекомых были больше, чем современные виды крупных птиц.
Поскольку появилось больше источников пищи, начали развиваться потребители других уровней пищевой цепи. Эти гетеротрофы выделяли углекислый газ в качестве побочного продукта их клеточного дыхания.
Развитие автотрофов и гетеротрофов позволили сохранить уровни кислорода и углекислого газа в атмосфере устойчивыми. Этот процесс продолжается и сегодня.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Статерийский период (1,8 — 1,6 млрд. лет назад)
От statheros — «стабильный». Стабилизация кратонов и окончательная кратонизация складчатых поясов.
Статерий (1860-1645 млн. лет) — в апогалактии характеризуется мощными тектоно-магматическими событиями
с образованием континентальных рифтов, внедрением расплавов различного состава и метаморфизмом.
Статерий (1800 — 1600 миллиона лет назад) характеризуется появлением новых платформ и окончательной кратонизацией складчатых поясов.
В этом периоде произошла максимальная сборка суперматерика
Нуна
(другие названия — Колумбия, Хадсонленд, а раньше — Мегагея).
Считается, что в течение статерийского периода
сформировались ядерные живые организмы (эукариоты).
Главная
Науки о природе
Биология :
Протерозой:
О протерозое |
Палеопротерозой (2,5) |
Мезопротерозой (1,6) |
Неопротерозой (1,0) |
Галактические года
На правах рекламы (см.
условия):
Алфавитный перечень страниц: |
|
Ключевые слова для поиска сведений об эволюции жизни в палеопротерозойскую эру: На русском языке: палеопротерозой, палеопротерозойская эра, сидерий, риасий, орозирий, статерий, На английском языке: Paleoroterozoic. |
«Сайт Игоря Гаршина», 2002, 2005.
Пишите письма
().
Страница обновлена 12.03.2019
Критика концепции кислородной катастрофы[ | код]
В настоящее время сам феномен кислородной катастрофы (заключающийся в том, что начало деятельности фотосинтетических организмов, связанное с этим накопление кислорода и превращение условий на поверхности планеты из восстановительных в окислительные) подвергается серьёзной критике. Установлено, что фотосинтетические организмы-продуценты кислорода появились ещё в начале архея, но свободный кислород в атмосфере Земли на рубеже архея и протерозоя появился благодаря изменениям характера земного вулканизма и это был постепенный и растянутый во времени процесс, но никак не единомоментное событие. Накопление органического углерода, отражающее жизнедеятельность древних организмов-фотосинтетиков, в архее проходило практически на таком же уровне, как и в последующие геологические эпохи. Но образовывавшийся на протяжении всего архея кислород не накапливался в атмосфере, а быстро расходовался на окисление каких-то веществ. Этими веществами были, вероятно, вулканические газы (сероводород, сернистый газ, метан и водород) и соединения двухвалентного железа (Fe2+). Изменения в характере вулканизма в конце архейской эры, связанные с формированием и стабилизацией континентальных плит, уменьшили поступление этих газов в атмосферу древней Земли, и кислород в итоге начал накапливаться. Но на протяжении большей части следующего за археем протерозоя уровень кислорода в земной атмосфере не повышался и в целом оставался низким, наблюдались даже периоды его снижения. И лишь в конце протерозоя по неизвестным причинам произошёл второй кислородный скачок, с которым связывается появление многоклеточных организмов. По одной из версий новый рост содержания кислорода в биосфере в конце протерозойской эры был вызван тем, что планктонные организмы-обитатели гидросферы приобрели способность осаждать органику, образующуюся при отмирании живых организмов, из толщи воды на дно (т. н. пеллетная транспортировка), тем самым выводя её из биологического круговорота. Поэтому значительная часть кислорода, тратившаяся на окисление мертвого органического вещества до углекислого газа и воды, высвободилась и, в итоге, кислород стал накапливаться.
Все это вместе говорит о том, что «Великое кислородное событие» следует рассматривать как сильно растянутый во времени процесс, продолжительностью не менее 1,5 млрд лет, имевший два выраженных скачка (около 2,5 млрд и 0,8—0,9 млрд лет назад) и как минимум одно падение (около 2,1 млрд лет назад) в содержании атмосферного кислорода. И все эти события являлись, преимущественно, результатом изменений вулканических процессов и геохимических соотношений, а не сдвигов биологической активности и метаболизма.
Интересной особенностью кислородных скачков являются наступавшие вслед за ними глобальные оледенения (Гуронское оледенение и Криогений). Как предполагается, Гуронское оледенение было вызвано снижением содержания метана в атмосфере вследствие уменьшения его выбросов от вулканической деятельности на фоне дополнительного его окисления появившимся в атмосфере кислородом. Наступление же Криогения было вызвано, как предполагается, распадом древнего суперконтинента Родинии, что привело к падению содержания в атмосфере углекислого газа (в ходе распада, по краям разломов, происходили массивные излияния базальта, который химически связывал атмосферный углекислый газ). Вызванное этим снижение концентрации парниковых газов приводило к глобальным охлаждениям Земли различного масштаба и продолжительности.
Ультрафиолет
Несмотря на то, что кислородный газ не мог использоваться непосредственно живыми существами, кислород не был вредным для организмов, живущих в то время.
Кислородный газ поднимался к вершине атмосферы, где он подвергался воздействию ультрафиолетовых (УФ) солнечных лучей. Это УФ-излучение разделило молекулы двухатомного кислорода и помогло создать озон, который состоит из трех атомов кислорода, ковалентно связанных друг с другом. Озоновый слой помог блокировать некоторые УФ-лучи от поверхности Земли. Это создало более безопасные условия для жизни организмов на суше. До образования озонового слоя жизнь находилась в океанах, где была защищена от суровой жары и радиации.
Орозирийский период (2,05 — 1,8 млрд. лет назад)
Орозирий (2075-1860 млн. лет) — от orosira — горный хребет.
Это глобальный орогенный период.
Толеитовый магматизм сопровождается активным газовым делением и рудообразованием (древнейшие «чёрные курильщики»).
Рубеж 1950 млн. лет характеризуется становлением глобальной системы коллизионных орогенов
и образованием раннепротерозойского суперконтинента Пангеи-1.
В Орозирии (2050 — 1800 миллиона лет назад)
Земля испытала два крупнейших из известных
астероидных ударов.
В начале периода, 2023 млн лет назад, столкновение с крупным астероидом привело к образованию астроблемы Вредефорт ЮАР
.
Её диаметр составляет 250—300 километров, что делает этот кратет крупнейшим на планете,
не считая еще не изученного предполагаемого кратера Земли Уилкса в Антарктиде диаметром 500 километров .
Антарктический метеорит был примерно в 6 раз больше Чиксулубского метеорита, вызвавшего вымирание
динозавров
в конце мелового периода.
Метеорит, создавший такой кратер в Антарктиде, мог вызвать
пермско-триасовое вымирание около 250 млн лет назад.
Ближе к концу периода новый удар привел к образованию медно-никелевого рудного бассейна в Садбери (Канада).
Вторая половина периода отмечена интенсивным
горообразованием
практически на всех континентах . .
Вероятно, в течение орозирия атмосфера Земли стала окислительной (богатой кислородом),
благодаря фотосинтезирующей деятельности цианобактерий.
Кислородная катастрофа: событие, запустившее эволюцию жизни на Земле
Недавно ученым удалось отыскать фактор, который, судя по всему, вызвал значительный эволюционный скачок миллиарды лет назад. «Кислородная революция» изменила химический состав поверхности планеты и подготовила ее к появлению более сложных форм жизни.
Василий Макаров
21 сентября 2017 11:15
В ранних океанах и даже в атмосфере молодой Земли не было свободного кислорода, хотя за счет фотосинтеза цианобактерии и продуцировали его как побочный продукт метаболизма. Свободный кислород не вступает во взаимодействие с другими распространенными на планете элементами, такими как азот или углерод, а вот человеку он жизненно необходим. Ученые подсчитали, что небольшие «карманы» свободного кислорода начали появляться на Земле примерно три миллиарда лет назад, а около 2,4 миллиардов лет назад уровень кислорода в атмосфере резко увеличился: за 200 миллионов лет кислорода стало больше в 10 000 раз! Это событие исследователи окрестили Кислородной катастрофой (Great Oxidation Event, букв. Великое окисление) и именно оно полностью изменило характер поверхностных химических реакций Земли.
Кислородная революция: преобразившаяся Земля
Геолог из Университета Британской Колумбии Мэттис Смит (Matthijs Smit) и его коллега, профессор Клаус Мезгер (Klaus Mezger) из Университета Берна, посвятили новую работу исследованию этого феномена. Зная, что Кислородная катастрофа также трансформировала и породы, из которых состоят континенты, ученые начали изучать результаты геохимического анализа вулканической активности по всему миру, что в конечном итоге позволило им отобрать 48 000 образцов, возраст которых исчисляется миллиардами лет.
В своем пресс-релизе Смит отмечает, что с того момента, как в океане начал появляться свободный кислород, в составе континентов произошли ошеломляющие изменения. Горные породы на территории современной Исландии и Фарерских островов по составу примерно похожи на те, что были на молодой Земле до Кислородной катастрофы: они богаты магнием, а вот содержание кремнезема в них довольно низкое. Породы прошлого содержали минеральный оливин, который инициировал кислородные химические реакции при контакте с водой. По мере того, как континентальная кора развивалась и увеличивалась в размерах, оливин практически исчез, а с ним прекратились и реакции. Кислород начал накапливаться в океанах, а когда вода насытилась им, то газ стал уходить и в атмосферу.
Смит уверен, что именно это и стало отправной точкой для развития жизненных форм такими, какими мы их знаем сегодня. После насыщения кислородом Земля стала не только более пригодной для жизни в целом, но и куда лучше подходящей для развития сложных организмов. Причина изменений континентальной структуры пока остается неизвестной, но ученые отмечают, что тектоника плит началась примерно в этот период, а потому между этими событиями может быть прямая связь.
Значение открытия
Речь не идет об эволюции и абиогенезе — вопросы изначального зарождения жизни на Земле все еще остаются открытыми. Однако кислород — важнейший элемент, обеспечивший существование белковой жизни. Зная, как он изменил Землю, ученые смогут применить тот же принцип в исследовании экзопланет и в будущем выбрать для человечества идеальную планету для заселения: к примеру, уже сейчас астрономы подозревают, что две планеты в системе TRAPPIST-1 покрыты огромными океанами. Зная, как кислород влияет на формирование континентов, можно будет значительно сузить круг поисков и целенаправленно искать максимально подходящий нам новый мир.
Причины кислородной катастрофы
Единственным значимым источником молекулярного кислорода является биосфера, точнее, фотосинтезирующие организмы. Фотосинтез, видимо, появился на заре существования биосферы (3,7—3,8 млрд лет назад), однако архебактерии и большинство групп бактерий практиковали аноксигенный фотосинтез, при котором не вырабатывается кислород. Кислородный фотосинтез возник у цианобактерий 2,7—2,8 млрд лет назад. Выделяющийся кислород практически сразу расходовался на окисление горных пород, растворённых соединений и газов атмосферы. Высокая концентрация создавалась лишь локально в пределах бактериальных матов (т. н. «кислородные карманы»). После того как поверхностные породы и газы атмосферы оказались окисленными, кислород начал накапливаться в атмосфере в свободном виде.
Какой же был источник кислорода на Земле?
Не одно столетие между учеными длятся дебаты о реальном источнике кислорода на Земле. По предварительным данным первую половину жизни планета Земля вообще была без кислорода. Большая часть ученых выдвигает теорию о том, что 2,4 млрд лет назад кислород на Земле был незначительным. Кислородом наша атмосфера наполнялась постепенно.
Как на Земле появился кислород? Считается, что основной источник кислорода на Земле — цианобактерии. Это фотосинтезирующий микроб, который порождает кислород. И благодаря цианобактерии произошел резкий скачек содержания кислорода в атмосфере. Но когда и благодаря чему появились эти микробы пока до конца не известно. Также до конца еще не понятно как именно происходил процесс наполнения атмосферы Земли кислородом. Известно, что это было сочетание резкого глобального похолодания, зарождение новых видов, и появление новых минеральных пород. Как заявил Доминик Папине (специалист института Карнеги, Вашингтон), учение пока не в силах четко определить, что было причиной, а что следствием. Многое произошло практически одновременно и по этой причине так много разных несостыковок и противоречий. Чтобы больше прояснить геологическую сторону этого вопроса, Доминик Папине детально изучает процесс образование железа, а также осадочных пород, что формируются на самом дне древних морей .
Его исследования направлены на особые минералы. Эти минералы содержаться именно в образованиях железа, и они вполне могут быть связаны с возникновением жизни древних микробов и их смерти. Минералы железа, которые находятся довольно на дне морей – самый большой источник железной руды. И это не просто материал для изготовления стали. По словам геологов именно в нем скрыта богатая история зарождения жизни на планете Земле.
А происхождение этого источника до сих пор остается большой загадкой. Ученые выяснили, что для его формирования нужна помощь особых микроэлементов, но, правда, пока неизвестно каких именно. Эти морские организмы простые одноклеточные, но к сожалению никакой информации они не оставили после себя. И исследователи не могут теперь узнать, какими именно они были, и что из себя представляли.
Предполагают, что строителем таких железных минералов была именно цианобактерия. Кислород, который выходил из нее окислял железо в морях и океанах еще далеко до того как произошел великий кислородный взрыв. Но остается не ясным одно. Цианобактерия, появилась на планете Земля задолго до накопления кислорода. Выходит, что прошли сотни миллионов лет, перед тем как наша атмосфера наполнилась кислородом?
Последствия и значение кислородной катастрофы
Итак, глобальные перемены в составе атмосферы не носили, как выяснилось, катастрофического характера. Однако последствия их действительно кардинально изменили нашу планету.
Возникли формы жизни, строящие свою жизнедеятельность на высокоэффективном кислородном дыхании, что создало предпосылки для последующего качественного усложнения биосферы. В свою очередь оно было бы невозможно без формирования озонового слоя атмосферы Земли – еще одного последствия появления в ней свободного кислорода.
Кроме того, многие анаэробные организмы не смогли приспособиться к наличию этого агрессивного газа в среде их обитания и вымерли, прочие же вынуждены были ограничиться существованием в бескислородных «карманах». По образному выражению советского и российского ученого, микробиолога Г. А. Заварзина, биосфера в результате кислородной катастрофы «вывернулась наизнанку». Следствием этого стало второе великое кислородное событие в конце протерозоя, имевшее итогом окончательное становление многоклеточной жизни.
Последствия кислородной катастрофы[править | править код]
Биосфераправить | править код
Поскольку подавляющая часть организмов того времени была анаэробной, неспособной существовать при значимых концентрациях кислорода, произошла глобальная смена сообществ: анаэробные сообщества сменились аэробными, ограниченными ранее лишь «кислородными карманами»; анаэробные же сообщества, наоборот, оказались оттеснены в «анаэробные карманы» (образно говоря, «биосфера вывернулась наизнанку»). В дальнейшем наличие молекулярного кислорода в атмосфере привело к формированию озонового экрана, существенно расширившего границы биосферы, и привело к распространению более энергетически выгодного (по сравнению с анаэробным) кислородного дыхания.
Атмосфераправить | править код
В результате изменения химического состава атмосферы после кислородной катастрофы изменилась её химическая активность, сформировался озоновый слой, резко уменьшился парниковый эффект. Как следствие, планета вступила в эпоху Гуронского оледенения.
Древнейшая атмосфера и деятельность примитивной жизни
Первичный состав атмосферы нельзя установить с абсолютной точностью, да и вряд ли он был в ту эпоху постоянным, однако ясно, что основу его составляли вулканические газы и продукты их взаимодействия с породами земной поверхности. Существенно то обстоятельство, что среди них не могло быть кислорода – он не является вулканическим продуктом. Ранняя атмосфера, таким образом, была восстановительной. Практически весь кислород атмосферы имеет биогенное происхождение.
Геохимическая и инсоляционная обстановки, вероятно, способствовали формированию матов – слойчатых сообществ прокариотных организмов, причем некоторые из них уже могли осуществлять фотосинтез (сначала аноксигенный, например, на основе сероводорода). Довольно скоро, по-видимому, уже в первой половине архея, цианобактерии освоили высокоэнергетический кислородный фотосинтез, который и стал виновником процесса, получившего наименование кислородной катастрофы на Земле.
Вам будет интересно:Иркутский острог: история постройки, основатель, фото
Сидерийский период (2,5 — 2,3 млрд. лет назад)
От sideros. Обилие железистых кварцитов.
Сидерий (2505-2290 млн. лёт) — характеризуется, по Е.Е.Милановскому, заложением в апогалактии палеорифтовых зон
в коре гетерогенных протоплатформ в виде линейных грабенообразных прогибов.
Сидерийский палеоклимат и оледенение
В Сидерии (2500 — 2300 миллиона лет назад) было самое продолжительное в истории Земли
Гуронское оледенение,
длившееся, по одним оценкам 2,4-2,1, по другим — 2,5-1,95 миллиард лет назад.
Т.е., оно продолжалось весь сидерийский и последующий риасийский период (почти полмиллиарда лет!).
Следующим по крутости было только полное обледенение в криогении —
пусть продолжавшееся всего 200 миллиона лет (а по другим оценкам — более 400 млн. лет),
но покрывшее Земной шар от макушки до макушки с небольшими прогалинами.
Кислородный переворот в сидерии
Также к этому периоду относят кислородную катастрофу (2,4 млрд. лет назад) —
резкое повышение кислорода в атмосфере Земли.
.
Почему-то это совпало по времени с Гуронской ледниковой эпохой.
Может быть, из-за повышения концентрации кислорода исчез парниковый эффект?
Или, наоборот, метан стал окисляться с разложением на углекислый газ и воду — вся Земля окуталась облаками,
увеличился парниковый эффект, пошли проливные дожди и снегопады, стали расти полярные и высокогорные ледники.
Ведь, как известно, кайнозойские оледенения тоже начинались по этой схеме —
с потепления и, как следствие — с увеличения осадков.
В 50-х годах XX века стали накапливаться данные о раннепротерозойском кислородном скачке — Кислородной катастрофе,
или «Великом кислородном событим» (Great Oxigenation Event).
Геохимические данные говорили о том, что ранняя атмосфера планеты была восстановительной, а затем 2,6–2,2 млрд лет назад
атмосфера и океан постепенно стали наращивать свободный кислород за счёт жизнедеятельности фотосинтетиков.
Проверка и уточнение этой гипотезы заняли следующие четыре десятка лет. Она получилась сложнее и интереснее.
Фотосинтетические организмы, выделяющие кислород, зародились на заре архейской жизни,
но свободный кислород на рубеже архея и протерозоя появился благодаря изменениям характера земного вулканизма.
90% своей жизни планета имела практически бескислородную гидросферу и атмосферу, при этом в протерозое
содержание кислорода оказывается намного меньшим предполагаемого прежде, и очень непостоянным.
Примерно 2,45 млрд лет назад, когда за короткое с точки зрения истории Земли время (несколько миллионов лет)
концентрация кислорода в атмосфере выросла примерно в тысячу раз, это называют «Великим кислородным событием» или кислородной катастрофой.
Начиная с раннего протерозоя в атмосфере и океане Земли окончательно установился кислородный режим.
Однако имеются многочисленные свидетельства того, что еще в конце архея, за 50–100 млн лет до кислородной катастрофы
на шельфе океана появлялись локальные участки с кислородной средой.
Ученые не раз фиксировали в породах архейского возраста всплески концентрации кислорода, которым дали имя
«аномальные эпизоды оксигенации» (anomalous oxygenation episode), или «кислородные дуновения» (whiff of oxygen).
Судя по всему, аномальные зоны оксигенации (насыщение водной толщи кислородом) возникали в замкнутых мелководных водоемах
или на отдельных участках шельфа, где временно устанавливались условия насыщения кислородом.
Это был как бы переходный период, «битва» между двумя геохимическими режимами — прежним бескислородным и новым кислородным.
И, прежде чем 2,45 млрд лет назад окончательно победил последний, инициатива несколько раз «переходила из рук в руки».