Клетки
Клетки бывают разных форм и размеров, но для всех из них есть общая схема строения.
Клетка состоит из протоплазмы, бесцветного, прозрачного желеподобного вещества, состоящего на 70% из воды и из разных органических и неорганических веществ. Большинство клеток состоят из трех основных частей: внешняя оболочка, называемая мембраной, центр — ядро и полужидкая прослойка — цитоплазма.
- Клеточная мембрана состоит из жиров и протеинов; она полупроницаема, т.е. пропускает такие вещества, как кислород и оксид углерода.
- Ядро состоит из особой протоплазмы, называемой нуклеоплазмой. Ядро часто называют «информационным центром» клетки, поскольку в нем содержится вся информация о росте, развитии и функционировании клетки в форме ДНК (дезоксирибонуклеиновая кислота). В ДНК содержится материал, необходимый для развития хромосом, которые несут наследственную информацию от материнской клетки к дочерней. В клетках человека 46 хромосом, по 23 от каждого родителя. Ядро окружено мембраной, которая отделяет его от других структур клетки.
- В цитоплазме находится множество структур, называемых оргаиеллами, или «маленькими органами», в число которых входят: митохондрии, рибосомы, аппарат Гольджи, лизосомы, эндоплазматическая сеть и центриоли:
- Митохондрии — сферические, продолговатые структуры, которые часто именуют «энергетическими центрами», поскольку они обеспечивают клетку силой, необходимой для производства энергии.
- Рибосомы — гранулярные образования, источник протеина, необходимого клетке для роста и восстановления.
- Аппарат Гольджи состоит из 4-8 соединенных между собой мешочков, которые производят, сортируют и поставляют протеины в другие части клетки, для которых они являются источником энергии.
- Лизосомы — сферические структуры, которые вырабатывают вещества для избавления от поврежденных или изношенных частей клетки. Они являются «очистителями» клетки.
- Эндоплазматическая сеть — сеть каналов, по которым вещества транспортируются внутри клетки.
- Центриоли — две тонкие цилиндрические структуры, расположенные под прямым углом. Они участвуют в формировании новых клеток.
Клетки не существуют самостоятельно; они работают в группах из подобных клеток — тканях.
Характеристика растений и их клеток
Как и грибы, растительные клетки сохранили защитную клеточную стенку от своих предков. Типичная клетка растений имеет сходное строение с типичной эукариотной клеткой, но не имеет центриолей, лизосом, промежуточных волокон, ресничек или жгутиков, как животная клетка. Однако клетки растений обладают рядом других специализированных структур, включая жесткую клеточную стенку, центральную вакуоль, плазмодесмату и хлоропласты. Хотя растения (и их типичные клетки) не подвижны, некоторые виды производят гаметы (половые клетки), которые обладают жгутиками и, следовательно, способны двигаться.
Все растения можно разделить на два основных типа: сосудистые и несосудистые. Сосудистые растения считаются более развитыми, чем несосудистые, потому что имеют специализированные ткани: ксилему, которая участвует в структурной поддержке и водопроводности, а также флоэму, которая является транспортной системой для продуктов фотосинтеза. Следовательно, они также обладают корнями, стеблями и листьями, представляющими более высокую форму организации, отсутствующую в растениях без сосудистых тканей.
Несосудистые растения, входящие в группу мохообразные, обычно не более 3-5 см в высоту, так как не имеют структурной поддержки, характерной сосудистым растениям. Они также в большей степени зависят от окружающей среды, чтобы поддерживать соответствующее количество влаги и, как правило, встречаются во влажных затемненных местах.
По оценкам, сегодня в мире насчитывается не менее 260 000 видов растений. Они варьируются по размеру и сложности от небольших мхов до гигантских секвой, самых больших живых организмов на планете, растущих до 100 м. Лишь малый процент от этих видов, непосредственно используется людьми для питания, жилья и медицины.
Тем не менее, растения являются основой экосистемы и пищевой цепи на Земле, и без них сложные формы жизни, такие как животные (включая людей), никогда бы не развились. Действительно, все живые организмы напрямую или косвенно зависят от энергии, создаваемой фотосинтезом, а побочный продукт этого процесса — кислород жизненно необходим для животных. Растения также уменьшают количество углекислого газа, присутствующего в атмосфере, препятствуют эрозии почв, влияют на уровень и качество воды.
Растениям свойственны жизненные циклы, которые включают чередование поколений диплоидных форм, содержащих парные наборы хромосом в ядрах клеток и гаплоидные формы, которые обладают только одним набором. Как правило, эти две формы растения очень разные по внешнему виду. В высших растениях диплоидная фаза, известная как спорофит (из-за способности вырабатывать споры), обычно доминирует и более узнаваема, чем генерация гаплоидных гаметофитов. Однако у мохообразных, поколение гаметофит является доминирующим и физиологически необходимым для фазы спорофит.
Животные должны потреблять белок для получения азота, но растения могут использовать неорганические формы этого элемента и, следовательно, не нуждаются во внешнем источнике белка. Однако растениям обычно требуется значительное количество воды, которое необходимо для процесса фотосинтеза, для поддержания структуры клеток, облегчения роста и в качестве средства доставки питательных веществ к растительным клеткам.
Количество и типы питательных веществ, необходимых для разных видов растений, значительно различается, однако некоторые элементы необходимы растениям в больших количествах. Эти питательные вещества включают кальций, углерод, водород, магний, азот, кислород, фосфор, калий и серу. Также, есть несколько микроэлементов, которые требуются растениями в меньших количествах: бор, хлор, медь, железо, марганец, молибден и цинк.
Клетка животных
Клетка — целостная и сложная биологическая система, мельчайшая единица строения многоклеточных организмов. Части клетки обеспечивают её нормальную жизнедеятельность, а при размножении — передачу наследственных признаков от родителей детям. В отличие от растительных клеток в клетках животных нет пластид, отсутствует клеточная оболочка.
Тела всех живых организмов состоят из клеток. Есть организмы, тела которых состоят только из одной клетки, — это бактерии, одноклеточные водоросли и грибы, простейшие. Тела большинства животных состоят из множества клеток.
Размер и форма клеток зависят от того, какую работу (функцию) они выполняют в организме.
Снаружи животная клетка покрыта эластичной клеточной мембраной. Она отделяет содержимое клетки от наружной среды и способна пропускать внутрь клетки одни вещества, а из клетки — другие, обеспечивая обмен веществ. В растительной клетке снаружи от мембраны расположена плотная оболочка, содержащая целлюлозу. В отличие от растительных клеток клетки животных такой оболочки не имеют.
Основное содержимое клетки, заполняющее весь её объём, — вязкая зернистая цитоплазма. Она постоянно движется, в ней протекают все жизненные процессы клетки. В цитоплазме периодически образуются пузырьки, наполненные жидкостью, — вакуоли. Они играют важную роль в пищеварении: здесь накапливаются питательные вещества; через вакуоли удаляются вредные продукты жизнедеятельности, и в результате поддерживается относительно постоянный состав цитоплазмы. Между клеткой и окружающей средой осуществляется обмен веществ.
Центральное место в цитоплазме занимает плотное округлое тельце — ядро. В нём находятся хромосомы, состоящие из длинных молекул органического вещества. Они регулируют процессы, протекающие в клетке, обеспечивают передачу наследственных признаков дочерним клеткам при размножении.
Помимо ядра в цитоплазме расположены другие органоиды (органеллы) — компоненты клетки, выполняющие определённые функции, — «клеточные органы».
Митохондрии отвечают за преобразование и запасание энергии, которая затем расходуется на жизненные процессы клетки. На рибосомах образуются белки, в аппарате Гольджи — жиры и углеводы. Кроме того, внутри аппарата Гольджи белки, жиры и углеводы накапливаются. Сюда они поступают по трубочкам эндоплазматической сети — этот органоид охватывает сетью разветвлённых канальцев всё пространство клетки и отвечает за транспортировку образованных в клетке веществ. В аппарате Гольджи вещества «упаковываются» в виде комочков и капелек, а потом уходят в цитоплазму и используются по назначению. Лизосомы участвуют в разрушении ненужных белков, жиров и углеводов.
В клетках животных отсутствуют пластиды, характерные для растительных клеток
Отсутствие хлоропластов — важное отличие животных клеток. Именно в них у растений происходит синтез органических веществ из неорганических
Животные, в отличие от растений, питаются готовыми органическими веществами.
Клетка животных содержит органоид, которого нет в растительных клетках. Он называется клеточным центром. Основу клеточного центра составляют два цилиндрических тельца. Они играют важную роль в делении клеток животных, обеспечивая равномерное распределение наследственного материала материнской клетки в образовавшихся клетках.
В цитоплазме клеток всех живых организмов можно обнаружить многочисленные мелкие и крупные зёрна, капельки белков, жиров и углеводов. Эти вещества образуются в разных частях клетки, транспортируются, распределяются и используются в процессе обмена веществ.
Это конспект по теме «Клетка животных». Выберите дальнейшие действия:
- Перейти к следующему конспекту: Ткани, органы и системы органов
- Вернуться к списку конспектов по Биологии.
- Проверить знания по Биологии.
Органеллы
Пластиды
Основная статья: Пластиды
Пластиды — органеллы растительной клетки, состоящие из белковой стромы, окружённой двумя липопротеидными мембранами. Внутренняя из них образует внутрь выросты (тилакоиды, или ламеллы).
Пластиды, как и митохондрии, являются самовоспроизводящимися органеллами и имеют собственный геном — пластом, а также рибосомы.
У высших растений все пластиды происходят от общего предшественника — пропластид, которые развиваются из двумембранных инициальных частиц.
Пластиды присущи исключительно растениям. Различают три основных типа пластид:
- Лейкопласты. Эти пластиды не содержат никаких пигментов, внутренняя мембранная система, хотя и присутствует, но развита слабо. Разделяют амилопласты, запасающие крахмал, протеинопласты, содержащие белки, элайопласты (или олеопласты), запасающие жиры. Этиопласты — это бесцветные пластиды растений, которые выращивали без освещения. При наличии света они легко превращаются в хлоропласты.
- Хромопласты — пластиды жёлто-оранжевого цвета, обусловленного наличием в них пигментов каротиноидов: каротина, ксантофилла, лютеина, зеаксантина и др. Образуются из хлоропластов при разрушении в них хлорофилла и внутренних мембран. Кроме того, хромопласты мельче хлоропластов по размерам. Каротиноиды присутствуют в хромопластах в виде кристаллов или растворёнными в каплях жира (такие капли называют пластоглобулами). Биологическая роль хромопластов до сих пор неясна.
Ультраструктура хлоропласта: 1. наружная мембрана 2. межмембранное пространство 3. внутренняя мембрана (1+2+3: оболочка) 4. строма (жидкость) 5. тилакоид с просветом (люменом) внутри 6. мембрана тилакоида 7. грана (стопка тилакоидов) 8. тилакоид (ламела) 9. зерно крахмала 10. рибосома 11. пластидная ДНК 12. пластоглобула (капля жира)
Хлоропласты — пластиды в виде двояковыпуклой линзы, окружённые оболочкой из двух липопротеидных мембран. Внутренняя из них образует длинные выросты в белковую строму — тилакоиды стромы и более мелкие, расположенные стопками тилакоиды гран, соединённые между собой тилакоидами стромы. С белковым слоем мембран тилакоидов связаны пигменты: хлорофилл и каротиноиды. В хлоропластах осуществляется фотосинтез. Первичный крахмал, синтезированный хлоропластами, откладывается в строме между тилакоидами.
Гигантские хлоропласты водорослей, присутствующие в клетке в единственном числе, называются хроматофорами. Их форма может быть очень разнообразной.
Вакуоли
Основная статья: Вакуоль
Вакуоль — полость в клетке, заполненная клеточным соком и окружённая мембраной — тонопластом. Вещества, содержащиеся в клеточном соке, определяют величину осмотического давления и тургор клеточной оболочки.
Вакуоли образуются из провакуолей — небольших мембранных пузырьков, отшнуровывающихся от ЭПР и комплекса Гольджи. Потом пузырьки сливаются, образуя более крупные вакуоли. Только у старых вакуолей все вакуоли могут сливаться в одну гигантскую центральную вакуоль, обычно же клетка, помимо центральной вакуоли, содержит мелкие вакуоли, наполненные запасными веществами и продуктами обмена.
Вакуоли выполняют в клетке следующие основные функции:
- создание тургора;
- запасание необходимых веществ;
- отложение веществ, вредных для клетки;
- ферментативное расщепление органических соединений (это сближает вакуоли с лизосомами).
ОДИН В ПОЛЕ НЕ ВОИН
Несмотря на амбиции, стволовые клетки не справятся с возлагаемыми на них задачами в одиночку. Как в человеческом обществе существует множество профессий, клетки внутри нас тоже трудятся во благо организма.
Костный мозг — кроветворный орган, расположенный в губчатых и трубчатых костях. Его населяют различные виды клеток. Если посмотреть на срез костного мозга в микроскоп, в нем можно увидеть участки кости, в которых представлены клетки костной ткани. Также обнаруживаются наполненные кровью синусоиды. Рядом с сосудами расположены нервные волокна. Здесь же находятся крупные жировые клетки, количество которых увеличивается с возрастом. Но так как главной функцией костного мозга является производство крови, его основную массу составляют клетки крови на разных стадиях трансформации. Среди них можно выделить гемопоэтические стволовые клетки (ГСК). Это примитивные клетки, дающие начало всем клеткам крови, они способны поддерживать постоянное количество на протяжении всей жизни организма.
Уникальным свойством всех стволовых клеток является способность к самообновлению. Так называют симметричное деление с образованием идентичных копий материнской клетки. Так, гемопоэтическая стволовая клетка может практически бесконечно штамповать собственные копии и не погибать. Часть стволовых клеток находится в состоянии покоя: они неактивны и не участвуют в клеточном цикле. Но проснувшись, такая стволовая клетка делает важный выбор.
Если клетка решила превратиться в специализированную клетку, она приступает к асимметричному делению. В результате образуется «выбравший свой путь» предшественник.
Каким же образом стволовая клетка решает, оставаться ей незрелой или повзрослеть? И как она выбирает будущую профессию? Важную роль в выборе играет окружение стволовой клетки. В первую очередь, это различные виды клеток, формирующие нишу. Например, одни «соседи» держат клетку в состоянии покоя, в то время как другие стимулируют ее на трансформацию.
Вместе с окружающими клетками на ГСК воздействуют растворимые вещества — цитокины и ростовые факторы. Часть из них вырабатывается клетками ниши, другие синтезируются в других органах, например в почках и паращитовидной железе. Некоторые вещества продляют состояние покоя клетки, способствуя ее самообновлению. Другие заставляют задуматься о выборе будущей профессии. Также в регуляции участвует нервная система, передавая сигналы о ситуации в организме.
Органы и железы
В организме ткани разных видов соединяются и образуют органы и железы. Органы имеют особое строение и функции; они составлены тканями двух или более видов. К органам относятся сердце, легкие, печень, мозг и желудок. Железы состоят из эпителиальной ткани и вырабатывают особые вещества. Различают два типа желез: эндокринные и экзокринньте. Эндокринные железы называют железами внутренней секреции, т.к. они выбрасывают вырабатываемые вещества — гормоны — непосредственно в кровь. Экзокринные (железы внешней секреции) — в каналы, например, пот из соответствующих желез по соответствующим каналам доходит до поверхности кожи.
Системы организма
Группы связанных между собой органов и желез, которые выполняют сходные функции, формируют системы мы организма. К ним относятся: покровная, скелетная, мышечная, респираторная (дыхательная), кровеносная (циркуляторная), пищеварительная, мочеполовая, нервная и эндокринная.
Эпителиальные ткани
Ороговевающий эпителий
- Трихоцит (стволовая клетка матрикса ногтей и волос)
- Кератиноцит
- Клетка базального слоя эпидермиса (стволовая клетка)
Неороговевающие эпителии
- Эпителиоцит
- Эндотелиоцит
- Альвеолоцит
- Альвеолоцит II типа (клетки, секретирующие сурфактант)
- Ресничная клетка эпителия дыхательных путей
- Бокаловидная клетка эпителия дыхательных путей (клетки, секретирующие слизь)
- Стволовая клетка эпителия дыхательных путей
- Мезотелиоцит (клетка мезотелия)
- Энтероцит
- Энтероцит каёмчатый тонкого кишечника
- Энтероцит бескаёмчатый (стволовая клетка крипт тонкого кишечника)
- Клетка Панета тонкого кишечника
- Таницит
- Подоцит
Клетки экзокринных желёз
- Клетка молочной железы (секреция молока)
- Себоцит — секреторная клетка сальной железы
- Главная клетка желез желудка
- Париетальная клетка желез желудка
- Поверхностная добавочная клетка слизистой оболочки желудка и двенадцатиперстной кишки
- Бокаловидная клетка желудочно-кишечного тракта
Клетки эндокринной системы
- Клетки гастроэнтеропанкреатической эндокринной системы
- Энтерохромаффиноподобная клетка желудочно-кишечного тракта
- Энтерохромаффинная клетка желудочно-кишечного тракта
- I-клетка желудочно-кишечного тракта
- K-клетка желудочно-кишечного тракта
- L-клетка желудочно-кишечного тракта
- PP-клетка желудочно-кишечного тракта
- S-клетка желудочно-кишечного тракта
- Альфа-клетка поджелудочной железы
- Бета-клетка поджелудочной железы
- Дельта-клетка поджелудочной железы
- G-клетка желудка
- Клетки гипофиза
- Соматотрофы передней доли гипофиза
- Лактотрофы передней доли гипофиза
- Кортикотрофы передней доли гипофиза
- Тиротрофы передней доли гипофиза
- Гонадотрофы передней доли гипофиза
- Гормонпродуцирующие клетки половых желёз
- Клетка Сертоли
- Интерстициальная клетка Лейдига
Мембранная организация клетки
В основе строения клетки человека лежит мембрана. Она, подобно конструктору, образует мембранные органоиды клетки и ядерную оболочку, а также ограничивает собой весь объём клетки.
Мембрана построена из двойного слоя липидов. С внешней стороны клетки на липидах мозаично размещаются белковые молекулы.
Избирательная проницаемость – основное свойство мембраны. Оно означает, что одни вещества мембраной пропускаются, а другие нет.
Рис. 1. Схема строения цитоплазматической мембраны.
Функции цитоплазматической мембраны:
- защитная;
- регуляция обмена веществ между клеткой и внешней средой;
- поддержание формы клеток.
Эпителиальные тканевые клетки
В этой группе мы находим клетки, которые являются частью самых поверхностных слоев организма. Он подразделяется на два типа, которые мы увидим ниже с их основными характеристиками.
1.1. Ткань для покрытия
Это правильные слои, которые покрывают организм.
-
Клетки эпидермиса или кератиновые : клетки, которые составляют кожу. Они размещены в компактной форме и плотно соединены друг с другом, чтобы не допустить проникновения внешних агентов. Они богаты кератиновым волокном, которое убивает их, когда они поднимаются к самой поверхностной части кожи, поэтому, когда они достигают наружу, они становятся твердыми, сухими и сильно уплотненными.
- Пигментированные клетки Этот тип клеток дает цвет коже благодаря выработке меланина, который защищает от солнечного излучения. Проблемы в этих клетках могут вызвать много проблем в коже и в зрении, например, как это происходит при определенных типах альбинизма.
Ячейки Меркеля Эти клетки отвечают за чувство осязания. Они связаны с нервной системой для передачи этой информации в направлении мозга.
пневмоцитами : расположены в легочных альвеолах, имеют функцию соединения воздуха, собираемого в легких с кровью, для обмена кислорода (O2) на углекислый газ (CO2). Таким образом, они в начале последовательности функций, ответственных за доставку кислорода во все части тела.
Папиллярные клетки : клетки, которые находятся на языке. Именно они позволяют нам чувствовать вкус благодаря способности получать химические вещества и преобразовывать эту информацию в нервные сигналы, которые составляют вкус.
энтероцитов клетки гладкой кишки, которые отвечают за поглощение перевариваемых питательных веществ и передачу их в кровь для транспортировки. Поэтому его функция состоит в том, чтобы сделать функцию стенки проницаемой для определенных питательных веществ и непроходимой для других веществ.
Эндотелиальные клетки Это те, которые формируют и структурируют кровеносные капилляры, обеспечивая правильную циркуляцию крови.Сбои в работе этих клеток могут привести к повреждению клеток в очень важных органах, которые могут перестать функционировать должным образом, а в некоторых случаях это может привести к смерти.
гамета являются клетками, которые участвуют в оплодотворении и формировании эмбриона. У женщины это яйцеклетка, а у мужчины — сперма. Это единственные клетки, которые содержат только половину нашего генетического кода.
1.2. Железистая ткань
Группы клеток, которые выполняют функцию генерации и выделения веществ.
Клетки потовых желез Типы клеток, которые производят и выводят пот наружу, главным образом в качестве меры по снижению температуры тела.
Клетки слезной железы : они несут ответственность за создание слезы, но они не хранят его. Его основная функция — смазывать веко и правильно скользить над глазным яблоком.
Клетки слюнных желез : отвечает за выработку слюны, которая облегчает переваривание пищи и в то же время является хорошим бактерицидным средством.
гепатоциты : принадлежащие к печени, выполняют несколько функций, включая выработку желчи и запас энергии гликогена.
Кальциформные клетки : клетки, найденные в различных частях тела, таких как пищеварительная или дыхательная система, которые отвечают за выработку «слизи», вещества, которое служит защитным барьером.
Палиетальные клетки Расположенный в желудке, этот класс клеток отвечает за выработку соляной кислоты (HCl), ответственной за правильную выработку пищеварения.
Животные клетки
Животная клетка по своему строению сложнее, чем растительная. Отличаются они органоидами. Например, в животной клетке отсутствуют вакуоли и пластиды. Оболочки тоже нет, снаружи клетка покрыта сразу цитоплазматической мембраной.
Внутри клетка заполнена цитоплазмой. Ядро, митохондрии, аппарат Гольджи и эндоплазматическая сеть также находятся в животной клетке и выполняют свои функции.
В отличии от растительной клетки, в животной есть клеточный центр. По форме он похож на скопление небольших трубочек. Этот органоид участвует в делении клетки.
Таким образом растительные и животные клетки имеют сходства и различия, но в целом каждая клетка напоминает небольшой городок со своими «центрами».