Общая морфология.
Митохондрии или хондриосомы (от греч. mitos – нить, chondrion — зернышко, soma — тельце) представляют собой гранулярные или нитевидные органеллы, присутствующие в цитоплазме простейших, растений и животных. Митохондрии можно наблюдать в живых клетках, так как они обладают достаточно высокой плотностью. В живых клетках митохондрии могут двигаться, перемещаться, сливаться друг с другом.
У разных видов размеры митохондрий очень непостоянны, так же как изменчива их форма (рис. 199). Все же у большинства клеток толщина этих структур относительно постоянна (около 0,5 мкм), а длина колеблется, достигая у нитчатых форм до 7-60 мкм.
Изучение величины и числа митохондрий не такое простое дело. Это связано с тем, что размеры и число митохондрий, которые видны на ультратонких срезах, не соответствуют реальности.
Обычные же подсчеты показывают, что на печеночную клетку приходится около 200 митохондрий. Это составляет более 20% от общего объема цитоплазмы и около 30-35% от общего количества белка в клетке. Площадь поверхности всех митохондрий печеночной клетки в 4-5 раз больше поверхности ее плазматической мембраны. Больше всего митохондрий в ооцитах (около 300000) и у гигантской амебы Chaos chaos (до 500000).
В клетках зеленых растений число митохондрий меньше, чем в клетках животных, так как часть их функций могут выполнять хлоропласты.
В спермиях часто присутствуют гигантские митохондрии, спирально закрученные вокруг осевой части жгутика. Отсутствуют митохондрии у кишечных энтамеб, живущих в условиях анаэробиоза, и у некоторых других паразитических простейших.
Локализация митохондрии в клетках различна. Обычно митохондрии скапливаются вблизи тех участков цитоплазмы, где возникает потребность в АТФ, образующейся в митохондриях. Так, в скелетных мышцах митохондрии находятся вблизи миофибрилл. В сперматозоидах митохондрии образуют спиральный футляр вокруг оси жгутика; вероятно, это связано с необходимостью использования АТФ для движения хвоста сперматозоида. Аналогичным образом у простейших и в других клетках, снабженных ресничками, митохондрии локализуются непосредственно под клеточной мембраной у основания ресничек, для работы которых необходим АТФ. В аксонах нервных клеток митохондрии располагаются около синапсов, где происходит процесс передачи нервного импульса. В секреторных клетках, которые синтезируют большие количества белков, митохондрии тесно связаны с зонами эргастоплазмы; вероятно, они поставляют АТФ для активации аминокислот и синтеза белка на рибосомах.
Характеристика, роль и строение митохондрий
Функции митохондрий как органелл аэробных эукариотических клеток – синтез молекул АТФ (аденозинтрифосфата) из АДФ. Поскольку АТФ является универсальным источником энергии для всех процессов в клетке, идущих с потреблением энергии, то говорят, что митохондрии выполняют функцию энергообеспечения, или энергообразования.
Из цитоплазмы в митохондрии поступают промежуточные продукты окисления органических веществ, кислород, АДФ, фосфорная кислота. Обратно выделяются углекислый газ, вода и молекулы АТФ.
Молекулы АТФ образуются не только в митохондриях. Небольшое их количество синтезируется в цитоплазме в процессе гликолиза, который наблюдается во всех клетках живого. В результате гликолиза молекула глюкозы разлагается на две молекулы пирувата. У аэробных прокариот далее он окисляется в присутствии кислорода на впячиваниях цитоплазматической мембраны. У эукариот же пируват поступает в митохондрии.
Здесь пируват, отдает свою ацетильную группу, содержащую два атома углерода, коферменту А. При этом выделяется первая молекула CO2. Кофермент А превращается в ацетил-кофермент-А (ацетил-КоА).
Ацетил-КоА получается не только из пирувата, но и жирных кислот, а также аминокислот
Так что не важно, какое исходное органическое вещество будет «сжигаться» в митохондриях для выработки энергии. Их функционирование в любом случае универсально
В матриксе митохондрий ацетил-КоА вступает в цикл Кребса, или цикл трикарбоновых кислот, где ацетильная группа окисляется и разлагается до еще двух молекул CO2. Ее атомы водорода присоединяются к коферментам НАД+ и ФАД+, с образованием их восстановленных форм — НАД · H + Н+ и ФАД · H + Н+. Именно их последующее окисление приведет к синтезу АТФ.
Хотя в цикле Кребса кислород не используется, при его отсутствии митохондрия перестает выполнять свою функцию уже на этом этапе, так как накапливаются продукты реакции.
На кристах митохондрий происходит разделение электронов и протонов водорода. Электроны от НАД и ФАД передаются по мембране через цепь ферментов и коферментов, которую называют дыхательной цепью. Протоны же в начале пути перебрасываются в межмембранное пространство, на внешнюю сторону крист.
Электроны в конечном итоге передаются на молекулу кислорода, она превращается в отрицательно заряженный ион. Между внешней и внутренней сторонами крист создается электрический потенциал, так как одна заряжена положительно, а другая – отрицательно. Когда достигается критическое значение H+ устремляются через каналы АТФ-синтетазы и другие ферменты на внутреннюю сторону, где соединяются с O2- с образованием воды.
АТФ-синтетаза – это фермент, синтезирующий АТФ. В митохондриях он встроен в мембрану крист и использует энергию перемещающихся протонов для фосфорилирования АДФ.
Цикл Кребса и дыхательная цепь — это сложные многоступенчатые процессы, обеспечивающиеся целым рядом ферментов и коферментов. Каждый требует отдельного рассмотрения. В общих чертах же функции митохондрий сводятся к синтезу ацетил-КоА, использованию атомов водорода ацетильной группы для восстановления НАД и ФАД, раздельному переносу электронов и протонов водорода на кислород, использованию энергии электрохимического градиента протонов для синтеза АТФ.
Связанные статьи:Строение митохондрии, Этапы энергетического обмена
Митохондрия – это двумембранный органоид эукариотической клетки, основная функция которого синтез АТФ – источника энергии для жизнедеятельности клетки.
Количество митохондрий в клетках не постоянно, в среднем от нескольких единиц до нескольких тысяч. Там, где процессы синтеза идут интенсивно, их больше. Также варьирует размер митохондрий и их форма (округлые, вытянутые, спиральные, чашевидные и др.). Чаще имеют округлую вытянутую форму, диаметром до 1 микрометра и длиной до 10 мкм. Могут перемещаться в клетке с током цитоплазмы или оставаться в одном положении. Перемещаются к местам, где больше всего требуется выработка энергии.
Согласно гипотезе симбиогенезамитохондрии произошли от аэробных бактерий, внедрившихся в другую прокариотическую клетку. Эти бактерии начали снабжать клетку дополнительным количеством молекул АТФ, а получать от нее питательные вещества. В процессе эволюции они потеряли автономность, передав часть своих генов в ядро и став таким образом клеточной органеллой.
В клетках новые митохондрии появляются в основном путем деления ранее существующих, т. е. они не синтезируются заново, что напоминает процесс размножения и говорит в пользу симбиогенеза.
Расположение в клетках
Митохондрии являются составляющей частью клеток преобладающей части растений, животных и грибов. Отсутствуют они только у анаэробных одноклеточных эукариот, обитающих в бескислородной среде.
Строение и биологическая роль митохондрий долгое время оставались загадкой. Впервые при помощи микроскопа их удалось увидеть Рудольфу Келликеру в 1850 году. В мышечных клетках ученый обнаружил многочисленные гранулы, которые на свету были похожи на пух. Понять, какова роль этих удивительных структур, стало возможно благодаря изобретению профессора Пенсильванского университета Бриттона Ченса. Он сконструировал прибор, который позволял видеть сквозь органеллы. Так была определена структура и доказана роль митохондрий в обеспечении энергией клеток и организма в целом.
Функции
- Важные пути деградации: цитратный цикл, для которого пируват вводится из цитозоля в матрикс. Затем пируват декарбоксилируют пируватдегидрогеназой до ацетилкофермента А. Другим источником ацетилкофермента А является деградация жирных кислот (β-окисление), которая происходит в клетках животных в митохондриях, но в растительных – только в глиоксисомах и пероксисомах. С этой целью ацилкофермент А переносят из цитозоля путем связывания с карнитином через внутреннюю митохондриальную мембрану и превращают в ацетилкофермента А. Из него большинство восстановительных эквивалентов в цикле Кребса (также известный как цикл Кребса или цикл трикарбоновой кислоты), которые затем превращаются в АТФ в окислительной цепи.
- Окислительная цепь. Установлен электрохимический градиент между межмембранным пространством и митохондриальным матриксом, который служит для получения АТФ с помощью АТФ-синтазы, с помощью процессов переноса электронов и накопления протонов. Электроны и протоны, необходимые для создания градиента, получают путем окислительной деградации из питательных веществ (например, глюкозы), поглощаемых организмом. Первоначально гликолиз происходит в цитоплазме.
- Апоптоз (запрограммированная гибель клеток)
- Хранение кальция: благодаря способности абсорбировать ионы кальция и затем высвобождать их, митохондрии вмешиваются в гомеостаз кальция клетки.
- Синтез кластеров железа-серы, требуемый, среди прочего, многими ферментами дыхательной цепи. Эта функция теперь считается существенной функцией митохондрий, т.е. как это причина, по которой почти все клетки эукариотов полагаются на энергетические станции для выживания.
Матрикс
Матрикс
Это пространство, включенное во внутреннюю митохондриальную мембрану. Содержит около двух третей общего белка. Играет решающую роль в производстве АТФ с помощью синтазы АТФ, включенной во внутреннюю мембрану. Содержит высококонцентрированную смесь сотен различных ферментов (главным образом, участвующих в деградации жирных кислот и пирувата), митохондриально-специфических рибосом, передаточной РНК и нескольких копий ДНК митохондриального генома.
Данные органоиды имеют свой собственный геном, а также ферментативное оборудование, необходимое для осуществления собственного биосинтеза белка.
Митохондрия Что такое Митохондрия и её функции
Строение и функционирование митохондрий
Авторепродукция митохондрий.
Двумембранные органеллы обладают полной системой авторепродукции. В митохондриях и пластидах существует ДНК, на которой синтезируются информационные, трансферные и рибосомные РНК и рибосомы, осуществляющие синтез митохондриальных и пластидных белков. Однако, эти системы, хотя и автономны, но ограничены по своим возможностям.
ДНК в митохондриях представляет собой циклические молекулы без гистонов и тем самым напоминают бактериальные хромосомы. Размер их составляет около 7 мкм, в одну циклическую молекулу митохондрий животных входит 16-19 тыс. нуклеотидных пар ДНК. У человека митохондриальная ДНК содержит 16,5 тыс. н.п., она полностью расшифрована. Найдено, что митохондральная ДНК различных объектов очень однородна, отличие их заключается лишь в величине интронов и нетранскрибируемых участков. Все митохондриальные ДНК представляют множественные копии, собранными в группы, кластеры. Так в одной митохондрии печени крысы может содержаться от 1 до 50 циклических молекул ДНК. Общее же количество митохондриальной ДНК на клетку составляет около одного процента. Синтез митохондриальных ДНК не связан с синтезом ДНК в ядре.
Так же как и у бактерий митохондральная ДНК собрана в отдельную зону – нуклеоид, его размер составляет около 0, 4 мкм в диаметре. В длинных митохондриях может быть от 1 до 10 нуклеоидов. При делении длинной митохондрии от нее отделяется участок, содержащий нуклеоид (сходство с бинарным делением бактерий). Количество ДНК в отдельных нуклеоидах митохондрий может колебаться в 10 раз в зависимости от типа клеток.
В некоторых культурах в клетках от 6 до 60% митохондрий не имеют нуклеоида, что может объясняться тем, что деление этих органелл скорее связано с фрагментацией, а не с распределением нуклеоидов.
Как уже говорилось, митохондрии могут как делиться, так и сливаться друг с другом. При слиянии митохондрий друг с другом может происходить обмен их внутренними компонентами.
Важно подчеркнуть, что рРНК и рибосомы митохондрий и цитоплазмы резко отличны. Если в цитоплазме обнаруживаются 80s рибосомы, то рибосомы митохондрий растительных клеток принадлежат к 70s рибосомам (состоят из 30s и 50s субъединиц, содержат 16s и 23s РНК, характерные для прокариотических клеток), а в митохондриях клеток животных обнаружены более мелкие рибосомы (около 50s)
Рибосомные РНК митохондрий синтезируются на митохондриальных ДНК. В митоплазме на рибосомах идет синтез белков. Он прекращается, в отличие от синтеза на цитоплазматических рибосомах, при действии антибиотика хлорамфеникола, подавляющего синтез белка у бактерий.
На митохондриальном геноме синтезируются 22 транспортные РНК. Триплетный код митохондриальной синтетической системы отличен от такового, используемого в гиалоплазме. Несмотря на наличие казалось бы всех компонентов, необходимых для синтеза белков, небольшие молекулы митохондриальной ДНК не могут кодировать все митохондриальные белки, только лишь их небольшую часть. Так ДНК размером 15 тыс.н.п. может кодировать белки с суммарным молекулярным весом около 6х105. В это же время суммарный молекулярный вес белков частицы полного дыхательного ансамбля митохондрии достигает величины около 2х106.
Если учесть, что кроме белков окислительного фосфорилирования в митохондрии входят ферменты цикла трикарбоновых кислот, ферменты синтеза ДНК и РНК, ферменты активации аминокислот и другие белки, то видно, что, для того чтобы кодировать эти многочисленные белки и рРНК и тРНК, количества генетической информации в короткой молекуле митохондриальной ДНК явно не хватает. Расшифровка нуклеотидной последовательности митохондриальной ДНК человека показала, что она кодирует всего лишь 2 рибосомные РНК, 22 трансферных РНК и всего 13 различных полипептидных цепей.
В настоящее время доказано, что большая часть белков митохондрий находится под генетическим контролем со стороны клеточного ядра и синтезируется вне митохондрий. Большинство митохондриальных белков синтезируется на рибосомах в цитозоле. Эти белки имеют специальные сигнальные последовательности, которые узнаются рецепторами на внешней мембране митохондрий. Эти белки могут встраиваться в них (см. аналогию с мембраной пероксисом), а затем перемещаться на внутреннюю мембрану. Этот перенос происходит в точках контакта наружной и внутренней мембран, где такой транспорт отмечен. Большинство липидов митохондрий так же синтезируются в цитоплазме.
Все это говорит о эндосимбиотическом происхождении митохондрий, о том, что митохондрии представляют собой организмы типа бактерий, находящиеся в симбиозе с эукариотический клеткой.
Не все клетки одинаковые
Клетка может представлять из себя как «кирпичик» многоклеточного организма, так и целый организм. За небольшим исключением, почти все клетки содержат генетический материал (ДНК и РНК), который регулирует метаболизм и синтез белков. Однако не у всех живых организмов клетки организованы одинаково. Поэтому на основании различий в клеточной организации выделяют две группы: эукариоты и прокариоты.
Растения, животные и грибы являются эукариотами и имеют высокоупорядоченные клетки. Их генетический материал упакован в центральное ядро, которое окружено специализированными клеточными компонентами, называемыми органеллами. Органеллы, такие как митохондрии, шероховатый эндоплазматический ретикулум и аппарат Гольджи, работают как хорошо отлаженный конвейер. Одни производят энергию, другие синтезируют и упаковывают белки, третьи транспортируют их в различные части клетки и за ее пределы. Ядро, как и большинство эукариотических органелл, связано мембранами, которые регулируют вход и выход белков, ферментов и другого клеточного материала в органеллу и из нее.
Прокариоты, с другой стороны, являются одноклеточными организмами, такими как бактерии и археи. Прокариотические клетки менее структурированы, чем эукариотические. У них нет ядра. Вместо этого их генетический материал свободно плавает в клетке. У них нет многих мембраносвязанных органелл, обнаруженных в эукариотических клетках, в том числе нет митохондрий.
Что такое митохондрии
Движение является важным составляющим фактором человеческой жизни. Однако, движение происходит благодаря энергии, которая в свою очередь поступает через еду, воду, кислород. Для преобразования вышеуказанных элементов в энергию, которая так необходима человеку для жизненных потребностей, в человеческом организме находятся одни из самых важных и трудолюбивых звеньев живой клетки — митохондрии. Отсутствие митохондрий делает невозможным функционирование клетки. Количество митохондрий в живой клетке зависит от ее активности и составляет в среднем от двухсот до нескольких тысяч. В молодых растущих и активно функционирующих клетках организма митохондрий гораздо больше, чем в старых. Объем митохондрии составляет около двадцати пяти процентов от объема живой клетки.
Считается, что митохондрии произошли из древнего симбиоза, возникшего в период поглощения ядросодержащей клеткой аэробный прокариот. Захваченная клетка начала полагаться на защитную среду хозяйской клетки, которая, в свою очередь, полагалась на поглощенный прокариот для производства энергии. По прошествии времени потомки поглощенного прокариота превратились в митохондрии
Их работа с использованием кислорода для создании энергии стала критически важной для эволюции эукариота. Современные митохондрии имеют огромное сходство с некоторыми современными прокариотами несмотря на прошедший многовековой период со времен древнего симбиотического события
Митохондрии представляют собой маленькие энергетические станции клеток, которые вырабатывают необходимую энергию для живых клеток. Расположена митохондрия в цитоплазме клетки и способна занимать до двадцати процентов ее объема. Митохондрий в организме огромное количество, они используют углеводы и кислород для производства энергии. Формы и размеры митохондрий бывают разнообразные, по большей части они вытянутые округлой формы, способные достигать длины до десяти микрометров. Митохондрии могут быть неподвижными, а также передвигаться по живой клетке. Они всегда продвигаются в пространство, в котором больше всего необходима выработать энергию.
Митохондрия достаточно самостоятельная органелла, имеющая свою собственную систему по синтезу белка — рибосомы, РНК, ДНК. Собственная генетическая система митохондрии отделена от генома клетки. Определенное количество белков митохондрии способны синтезировать самостоятельно, а часть получать из цитоплазмы.
Митохондрии считаются полуавтономными, так как частично зависят от клетки для репликации и роста. Как и бактерии, митохондрии имеют кольцевую ДНК, реплицируются репродуктивным процессом, который называется бинарным делением. Таким образом, митохондрии способные к размножению органеллы. Их обновление происходит в течении всего клеточного цикла. Воспроизведение митохондрий происходит путем их деления, то есть распадения органеллы на новые две митохондрии благодаря возникшей в середине митохондрии перегородке. Процесс их деления независим от деления клетки. Кроме того, до репликации эти органеллы способны сливаться воедино одна с другой. Длительность жизни митохондрий составляет несколько дней.
Функции митохондрий
Митохондрии представляют собой своеобразные станции по выработке энергии живых клеток. За счет окисления различных органических соединений митохондрии высвобождают энергию путем её распада. Данный процесс является сложным и происходит в несколько этапов. Кроме энергетической функции митохондрии берут участие в регулировании обмена веществ и воды, синтезе гормонов и прочих структур организма, а также хранят генетическую информацию. Митохондрии участвуют в контроле роста, деления и гибели клеток, регулируют содержание ионов кальция в клетках. Кальций жизненно важен для ряда клеточных процессов, поэтому митохондрия способна поглощать и удерживать ионы кальция до того времени, когда они понадобятся клеткам.
Митохондрии существуют в живых клетках не только человека, но и в клетках животных и растений, кроме примитивных бактерий. Правильное функционирование митохондрий способно влиять на продолжительность жизни. Регулярные физические нагрузки и здоровое питание оказывают положительное влияние на поддержание функций этих маленьких микроорганизмов. Митохондрии вырабатывают энергию в мышцах, лечат их, удаляют ненужные частицы травмированных волокон мышцы. Продолжительные тренировки способствуют большому количеству образования митохондрий.
Митохондриальная ДНК
Основная статья: Митохондриальная ДНК
Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу, в клетках человека имеющую размер 16569 нуклеотидных пар, что приблизительно в 105 раз меньше ДНК, локализованной в ядре. В целом митохондриальная ДНК кодирует 2 рРНК, 22 тРНК и 13 субъединиц ферментов дыхательной цепи, что составляет не более половины обнаруживаемых в ней белков. В частности, под контролем митохондриального генома кодируются семь субъединиц АТФ-синтетазы, три субъединицы цитохромоксидазы и одна субъединица убихинол-цитохром-с-редуктазы. При этом все белки, кроме одного, две рибосомные и шесть транспортных РНК транскрибируются с более тяжёлой (наружной) цепи ДНК, а 14 других тРНК и один белок транскрибируются с более лёгкой (внутренней) цепи.
На этом фоне геном митохондрий растений значительно больше и может достигать 370000 нуклеотидных пар, что примерно в 20 раз больше описанного выше генома митохондрий человека. Количество генов здесь также примерно в 7 раз больше, что сопровождается появлением в митохондриях растений дополнительных путей электронного транспорта, не сопряжённых с синтезом АТФ.
Митохондриальная ДНК реплицируется в интерфазе, что частично синхронизировано с репликацией ДНК в ядре. Во время же клеточного цикла митохондрии делятся надвое путём перетяжки, образование которой начинается с кольцевой бороздки на внутренней митохондриальной мембране. Детальное изучение нуклеотидной последовательности митохондриального генома позволило установить то, что в митохондриях животных и грибов нередки отклонения от универсального генетического кода. Так, в митохондриях человека кодон ATA вместо изолейцина в стандартном коде кодирует аминокислоту метионин, кодоны AGA и AGG, обычно кодирующие аргинин, являются стоп-кодонами, а кодон TGA, в стандартном коде являющийся стоп-кодоном, кодирует аминокислоту метионин. Что касается митохондрий растений, то по-видимому, они используют универсальный генетический код. Другой чертой митохондрий является особенность узнавания кодонов тРНК, заключающаяся в том, что одна подобная молекула способна узнавать не один, но сразу три или четыре кодона. Указанная особенность снижает значимость третьего нуклеотида в кодоне и приводит к тому, что митохондрии требуется меньшее разнообразие типов тРНК. При этом достаточным количеством оказываются всего 22 различных тРНК.
Имея собственный генетический аппарат, митохондрия обладает и собственной белоксинтезирующей системой, особенностью которой в клетках животных и грибов являются очень маленькие рибосомы, характеризуемые коэффициентом седиментации 55S, что даже ниже аналогичного показателя у 70S-рибосом прокариотического типа. При этом две большие рибосомные РНК также имеют меньшие размеры, чем у прокариот, а малая рРНК вообще отсутствует. В митохондриях растений, напротив, рибосомы более сходны с прокариотическими по размерам и строению.
В специализированных (не делящихся) клетках митохондрии обычно не делятся. Обновление пула митохондрий в этом случае происходит путём созревания митохондрий из протомитохондрий, имеющих исходно диаметр 0,1-0,2 микрона. Откуда берутся протомитохондрии неизвестно, но предполагается, что затравкой для них служит ДНК постмитохондрий, высвобождающаяся в цитоплазму. Протомитохондрии обладают высокой скоростью дыхания, но невысоким дыхательным контролем (Векшин Н. Л. и др. 2004—2014).
Митохондрии: как они выглядят
По форме митохондрии напоминает цилиндр. Они часто встречаются в эукариотах, занимая от 10 до 21 % объема клетки. Их размеры и формы во многом разнятся и способны меняться в зависимости от условий, но ширина постоянна: 0,5-1 мкм. Перемещения хондриосом зависят от того, в каких местах клетки совершается быстрая трата энергии. Передвигаются по цитоплазме, применяя для передвижения структуры цитоскелета.
Заменой разных по габаритам митохондрий, работающих отдельно друг от друга и снабжающих энергией некоторые зоны цитоплазмы, являются длинные и разветвленные митохондрии. Они способны обеспечить энергией участки клеток, находящиеся далеко друг от друга. Подобная совместная работа хондриосом наблюдается не только у одноклеточных организмов, но и у многоклеточных. Самое сложное строение хондриосом встречается в мышцах скелета млекопитающих, где самые большие разветвленные хондриосомы стыкуются друг с другом, используя межмитохондриальные контакты (ММК).
Они представляют собой узкие просветы между прилегающими друг к другу митохондриальными мембранами. Данное пространство обладает высокой электронной плотностью. ММК больше встречаются в клетках где связываются вместе с работающими хондриосомами.
Чтобы лучше разобраться в вопросе, нужно кратко расписать значимость митохондрии, строение и функции этих удивительных органелл.
Схема строения митохондрии
Рассмотрим особенности строения этих важных структур. Они образованы в результате сочетания нескольких элементов. Оболочка этих органоидов складывается из внешней и внутренней мембраны, они в свою очередь состоят из фосфолипидных бислоев и белков. Обе оболочки отличаются по своим свойствам. Между ними расположено пять различных отсеков: наружная мембрана, межмембранное пространство (промежуток между двумя мембранами), внутренняя, криста и матрикс (пространство внутри внутренней мембраны), в целом – внутренние структуры органоида.
На иллюстрациях в учебниках митохондрия преимущественно выглядит как отдельная бобовидная органелла. Так ли это на самом деле? Нет, они образуют трубчатую митохондриальную сеть, которая может проходить и изменять всю клеточную единицу. Митохондрии в клетке способны сочетаться (путем слияния) и повторно делиться (делением).
Обратите внимание! В дрожжах за одну минуту совершается около двух митохондриальных слияний. Поэтому невозможно точное определение текущей численности митохондрий в клетках.
Внешняя мембрана
не могут пройти через мембрану
Внешняя, которая охватывает всю органеллу и не свернута, имеет весовое отношение фосфолипида к белку 1:1 и, таким образом, похожа на эукариотическую плазматическую мембрану. Она содержит множество интегральных белков, поринов. Порины образуют каналы, которые обеспечивают свободную диффузию молекул с массой до 5000 дальтон через оболочку. Более крупные белки могут вторгаться, когда сигнальная последовательность на N-конце связывается с большой субъединицей белка транслоксазы, из которой они затем активно перемещаются по мембранной оболочке.
Если трещины возникают во внешней оболочке, белки из межмембранного пространства могут выходить в цитозоль, что может привести к гибели клетки. Наружная мембрана может сливаться с оболочкой эндоплазматического ретикулума, а затем формировать структуру под названием MAM (ER, ассоциированную с митохондрией)
Это важно для обмена сигналами между ER и митохондрией, что также необходимо для переноса липидов
Межмембранное пространство
Участок представляет собой промежуток посреди внешней и внутренней мембраны. Поскольку внешняя обеспечивает свободное проникновение малых молекул, их концентрация, таких как ионы и сахар, в межмембранном пространстве идентична концентрациям в цитозоле. Однако для больших белков требуется передача специфической сигнальной последовательности, так что состав белков различается между межмембранным пространством и цитозолем. Таким образом, белок, который удерживается в межмембранном промежутке, является цитохромом.
Внутренняя мембрана
Внутренняя митохондриальная мембрана содержит белки с четырьмя видами функций:
- Белки – проводят реакции оксидации респираторной цепочки.
- Аденозинтрифосфатсинтаза, которая производит в матрице АТФ.
- Специфические транспортные белки, которые регулируют проход метаболитов между матрицей и цитоплазмой.
- Системы импорта белков.
Внутренняя имеет, в частности, двойной фосфолипид, кардиолипин, замещенный четырьмя жирными кислотами. Кардиолипин обычно характерен для митохондриальных мембран и бактериальных плазматических мембран. В организме человека он в основном присутствует в областях с высокой метаболической активностью или высокой энергетической активностью, таких как сократительные кардиомиоциты, в миокарде.
Внимание! Внутренняя мембрана содержит более 150 различных полипептидов, около 1/8 всех митохондриальных белков. В результате концентрация липидов ниже, чем у внешнего бислоя, и его проницаемость ниже.
В типичной митохондрии печени, например, внешняя область, в частности кристы, примерно в пять раз превышает площадь наружной мембраны. Энергетические станции клеток, которые имеют более высокие потребности в АТФ, например, мышечные клетки, содержат больше крист, чем типичная митохондрия печени.
Внутренняя оболочка охватывает матрикс, внутреннюю жидкость митохондрии. Он соответствует цитозолю бактерий и содержит митохондриальную ДНК, ферменты цитратного цикла и их собственные митохондриальные рибосомы, которые отличаются от рибосом в цитозоле (но также и от бактерий). Межмембранное пространство содержит ферменты, которые могут фосфорилировать нуклеотиды под потреблением АТФ.
Общая информация
Структуру открыли еще в середине XIX века. Стоит отметить, что в течение целых 150 лет, все ученые считали, что митохондрии способны выполнять только единственную функцию, а именно быть энергетической машиной клетки.
Для того чтобы было немного понятно: организм получает питательные компоненты, после чего происходит процесс деградации, который доходит до митохондрии. Затем наблюдается окислительная деградация всех питательных компонентов, которые поступили в организм.
Где же живут митохондрии?
Митохондрии находятся в цитоплазме, а именно в тех районах, где появляется необходимость в АТФ.
Если более внимательно посмотреть с точки зрения биологии, то митохондрий много в мышечной ткани сердца. В сперматозоидах также расположены митохондрии, а их основная цель это создать защитную маскировку. В сперматозоидах митохондрии вырабатывают значительно меньше энергии, чем в мышечной ткани сердца.