Что такое пищеварительная вакуоль: строение и основные функции

Что такое пищеварительная вакуоль: строение и основные функции

Что такое пищеварительная вакуоль: строение и основные функции
СОДЕРЖАНИЕ
0
1
02 мая 2020

Строение

Такие понятия, как строение и функции вакуоли, считаются взаимозависимыми.

Структура органеллы:

  • внешний слой представлен мембраной, одно из названий – тонопласт (от латин. – напряжение и греч. – оформленный). Функции – транспортная и барьерная,
  • внутренняя часть является клеточным соком, представлена раствором жизненно важных веществ, которые являются результатом деятельности протопласта, включает воду, углеводы (дисахариды, моносахариды, гликоген, крахмал), красящие пигменты (танин, меланин, антоцианы), минеральные соли (фосфаты, нитраты, хлориды, полифосфаты), жиры, поли- оксимасляную кислоту, заживляющие вещества, газы для улучшения плавучести, алкалоиды, органические кислоты и прочие вещества.

Данная клеточная органелла встречается в составе многих клеток, преимущественно грибов и растений. Ученые диагностируют ее присутствие также в составе бактерий и животных

Это обусловлено многоплановостью функций органеллы и ее важностью для живого организма

Клеточная органелла

Растительная клетка и ее строение

Клетка — структурная единица живого организма. Как функциональная единица она обладает всеми свойствами живого: дышит, питается, ей свойствен обмен веществ, выделение, раздражимость, деление и самовоспроизведение себе подобных. Типичная растительная клетка содержит хлoрoпласты и вакуoли; oкружена целлюлoзнoй клетoчнoй стенкoй.

Хлоропласты — двумембранные пластиды зелёного цвета (наличие пигмента хлорофилла). Отвечают за процесс фотосинтеза. Кроме хлоропластов, в растительной клетке имеются жёлто-оранжевые или красные пластиды (хромопласты) и бесцветные пластиды (лейкопласты).

Вакуоль — полость, занимающая 70—90 % общего объёма взрослой клетки, отделённая от цитоплазмы мембраной (тонопластом). Для рaстительных клеток хaрaктерно нaличие вaкуоли с клеточным соком, в котором рaстворены соли, сaхaрa, оргaнические кислоты. Вaкуоль регулирует тургор клетки (внутреннее давление).

Цитоплазма — внутренняя среда клетки, бесцветное вязкое образование, находящееся в постоянном движении. Цитoплазма сoстoит из вoды с раствoренными в ней веществами и oрганoидoв.

Клеточная оболочка (клеточная стенка) — снаружи плотная, образованная целлюлозой или клетчаткой, внутри плазматическая мембрана, в построении которой участвуют белки и жироподобные вещества. Ее мoлекулы сoбраны в пучки микрoфибрилл, кoтoрые скручены в макрo-фибриллы. Прoчная клетoчная стенка пoзвoляет пoддерживать внутреннее давление — тургoр.

 Ядро — носитель признаков и свойств клетки и всего организма. Ядро отделено от цитоплазмы двухслойной мембраной. В ядре находятся хромосомы и ядрышки. Число хромосом для вида постоянно. Ядро содержит наследственный материал — ДНК сo связанными с ней белками — гистoнами (хрoматин). Ядро заполнено ядерным соком (кариоплазмой). Ядрo кoнтрoлирует жизнедеятельнoсть клетки. Хрoматин сoдержит кoдирoванную инфoрмацию для синтеза белка в клетке. Вo время деления наследственный материал представлен хрoмoсoмами.

Плазматическая мембрана (плазмалемма, клеточная мембрана), oкружающая растительную клетку, сoстoит из двух слoев липидoв и встрoенных в них мoлекул белкoв. Мoлекулы липидoв имеют пoлярные гидрoфильные «гoлoвки» и непoлярные гидрoфoбные «хвoсты». Такoе стрoение oбеспечивает избирательнoе прoникнoвение веществ в клетку и из нее.

Лизосомы — мембранные тельца, содержащие ферменты внутриклеточного пищеварения. Переваривают вещества, избыточные органеллы (аутофагия) или целые клетки (аутолиз).

Тело высшего растения образовано клетками, которые отличаются друг от друга строением и функцией. Клетки, имеющие общее происхождение и выполняющие свойственную им функцию, образуют ткань.

Жизнедеятельность клетки

    1. Движение цитоплазмы осуществляется непрерывно и способствует перемещению питательных веществ и воздуха внутри клетки.
    2. Обмен веществ и энергии включает следующие процессы:
      • поступление веществ в клетку;
      • синтез сложных оргaнических соединений из более простых молекул, идущий с зaтрaтaми энергии (плaстический обмен);
      • рaсщепление, сложных оргaнических соединений до более простых молекул, идущее с выделением энергии, используемой для синтезa молекулы AТФ (энергетический обмен);
      • выделение вредных продуктов рaспaдa из клетки.
    3. Размножение клеток делением.
    4. Рост клеток — увеличение клеток до размеров материнской клетки.
    5. Развитие клеток — возрастные изменения структуры и физиологии клетки.

Схема. Типичная растительная клетка.

Нажмите на картинку для увеличения!

Это конспект по теме «Растительная клетка и ее строение». Выберите дальнейшие действия:

  • Перейти к следующему конспекту: Растительная ткань (ткани растений)
  • Вернуться к списку конспектов по Биологии.
  • Проверить знания по Биологии за 6 класс.

Симбиоз двух организмов

Симбиоз одного живого существа с другими организмами, находящимися в его пищеварительной вакуоли, рассматривается как один из важных элементов эволюции. Особенность одноклеточных и мелких эукариот: для них обычны специализированные органоиды, по нескольку одновременно, с частой сменой, сочетанием, изменением функций.

Например, многие крупные бактерии, актинии, грибы, морские слизни практикуют пищеварительный захват микроводорослей. При этом переваривание водорослей может притормозиться со вступлением организма в симбиотическую связь с ними.

Устойчивый симбиоз гриба с водорослями внутри его органоидов привёл к появлению лишайников. Эвглена зелёная, как принято считать, имеет в качестве хлоропластов хламидомонад, эволюционировавших внутри её организма. Плавучий папоротник азолла образует заполненные слизью полости, и когда в них попадает сине-зелёная водоросль анабена (Anabaena azollae), полость закрывается, образуя вакуоль для проживания в ней этой водоросли.

Основные функции

Функции вакуоли разнообразны:

В некоторых растительных органоидах откладываются остатки жизнедеятельности, после из них образуются вещества, которые способны выделять фермент. Вот эти вещества отпугивают животных, которые питаются травой (они имеют горький или вяжущий привкус). Ярким примером служит растение одуванчик или молочай, если мы оторвем листик, то увидим белое молочко — это и есть содержимое вакуолей.
С помощью полупроницательной мембраны она может поглощать в себя воду, в результате этого повышается внутреннее давление в клетке

Это очень важно во время роста и для водного баланса растения.
В некоторых вакуолях находятся пигменты, которые собственно и окрашивают цветы, плоды и листья в разноцветные цвета. Яркая расцветка для цветов очень важна, так как насекомые в первую очередь опыляют яркие и большие цветы.
В растениях эти компоненты участвуют в аутолизе — это значит, что клетки занимаются самоперевариванием.
Некоторые из этих компонентов выполняют функцию определенных резервуаров, которые запасают необходимые питательные вещества

Такие, как сахароза, различные белки, органические кислоты, минеральные соли и многие другие вещества.

Все живые существа на планете Земля имеют клеточное строение. Этот факт не относится к внеклеточной форме жизни — вирусам. Одной из составных частей клетки является вакуоль. Она встречается как у животных и растений, так и у грибов, водорослей, бактерий. Что представляет собой вакуоль, ее строение и функции будут описаны ниже.

Изучение, что такое вакуоль, следует начать с понятия эукариотов — это одна из разновидностей клеток, в которых присутствует ядро, отделенное от цитоплазмы двойной перегородкой — мембраной или тонопластом.

В клетке присутствует емкость, которая относится к категории органоидов (или органелл) и необходима живому организму для конкретных нужд. По внешнему виду органелла напоминает мешочек. В целом считается закрытой структурой. Вакуоль отделяется от прочих клеточных составляющих одной мембраной.

Что такое вакуоль, каково ее происхождение. образуется из провакуолей — это такие новообразования в виде тонопластовых пузырьков. Категория провакуолей относится к комплексу Гольджи и эндоплазматическому ретикулуму. Их слияние обуславливает появление органелл.

Перечислим основные характеристики вакуолей:

  • органелла растительной клетки превалирует в количественном выражении над органоидом животной клетки;
  • для животной органеллы присущ временный характер существования, для растительной клетки – постоянный;
  • в составе растений присутствует единственная органелла с крупным размером и значительными запасами;
  • животная клетка характеризуется множеством мелких органоидов для выполнения пищеварительной и выделительной функций.
READ  География канады

Вакуоль растительной и животной клетки

Существует разделение вакуолей на следующие категории:

  1. Пищеварительная вакуоль: встречается у губок, простейших и животных, представлена в виде мембранных пузырьков в составе клеточной цитоплазмы; Образуется как результат заглатывания капелек жидкости (или пиноцитоза), оформленных клеток или частиц (или фагоцитоза). Отмечается моментальным изменением формы и объема. Получила свое название за счет процесса пищеварения в ее составе. Пищеварительный процесс внутри органоида по отношению к пищевым частицам именуется циклозом, в ходе которого в состав органеллы попадают ферменты, отвечающие за процесс переваривания. В итоге происходит изменение среды с кислой на щелочную. Остатки, не прошедшие этап переваривания, выводятся через порошицу.
  2. Пульсирующая: встречается под названием сократительной или выделительной, присутствует в составе одноклеточных организмов и , имеет форму звезды, способствует аккумулированию и выводу результатов распада, отвечает за поддержание стабильного уровня осмотического давления, необходима для регуляции осмотического давления.
  3. Запасающая: присутствует в семенах, плодах, растительных корневищах, животных тканях, для нее характерно разрастание с поглощением клеточного пространства, гарантирует водный запас, накопление витаминов, минералов и питательных веществ.
  4. Газовая: встречается в клетках ряски, спирулины (плавучих микроводорослях), водных животных, способствует водородному и иному газовому обогащению, повышает степень плавучести / непотопляемости организма.
  5. Токсическая: отмечается в клеточной структуре рыб, насекомых, растений, ядовитых животных, включает в состав полифенолы, алкалоиды, способствует аккумуляции ядов, которые применяются растениями для защиты от насекомых и животных.

Строение и функции

Пластиды

Пластиды (от др.-греч. Πλαστόс — вылепленный) — полуавтономные органеллы высших растений, водорослей и некоторых фотосинтезирующих простейших. Пластиды имеют от двух до четырёх мембран, собственный геном и белоксинтезирующий аппарат.

Согласно симбиогенетической теории пластиды, как и митохондрии, произошли в результате «захвата» древней цианобактерии предшественником эукариотической «хозяйской» клетки. При этом внешняя мембрана пластид соответствует плазматической мембране хозяйской клетки, межмембранное пространство — внешней среде, внутренняя мембрана пластид — мембране цианобактерии, а строма пластид — цитоплазме цианобактерии. Наличие трёх (эвгленовые и динофлагелляты) или четырёх (золотистые, бурые, жёлто-зелёные, диатомовые водоросли) мембран считается результатом двух- и трёхкратного эндосимбиоза соответственно.

Хлоропласты (от греч. Χλωρός — «зелёный») — зелёные пластиды, которые встречаются в клетках фотосинтезирующих эукариот. С их помощью происходит фотосинтез. Хлоропласты содержат хлорофилл.

В одной клетке листа может находиться 15—20 и более хлоропластов, а у некоторых водорослей — лишь 1 -2 гигантских хлоропласта (хроматофора) различной формы.

Хлоропласты ограничены двумя мембранами — наружной и внутренней. Наружная мембрана отграничивает жидкую внутреннюю гомогенную среду хлоропласта — строму (матрикс) В строме содержатся белки, липиды, ДНК (кольцевая молекула) , РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна), а также ферменты, участвующие в фиксации углекислого газа.

Внутренняя мембрана хлоропласта образует впячивания внутрь стромы — тилакоиды, которые имеют форму уплощенных мешочков (цистерн) . Несколько таких тилакоидов, лежащих друг над другом, образуют грану, и в этом случае они называются тилакоидами граны. Именно в мембранах тилакоидов локализованы светочувствительные пигменты, а также переносчики электронов и протонов, которые участвуют в поглощении и преобразовании энергии света.

Рисунок 10. Хлоропласты.

Осмотическое давление в клетке

Осмотическое давление — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану (осмос). Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.

Мера градиента осмотического давления, то есть различия водного потенциала двух растворов, разделённых полупроницаемой мембраной, называется тоничностью. Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое — гипотоническим.

Тургор тканей — напряжённое состояние оболочек живых клеток. Тургорное давление — внутреннее давление, которое развивается в растительной клетке, когда в неё в результате осмоса входит вода и цитоплазма прижимается к клеточной стенке; это давление препятствует дальнейшему проникновению воды в клетку.

Тургор обуславливается тремя факторами: внутренним осмотическим давлением клетки, которое вызывает напряжение клеточной оболочки, внешним осмотическим давлением, а также упругостью клеточной оболочки.

Рисунок 11. Взаимодействие эритроцитов и растительной клетки с растворами.

Возникновение клеток

Доподлинно неизвестно, когда на Земле появилась первая клетка и каким путем она возникла. Наиболее ранние вероятные ископаемые остатки клеток, приблизительный возраст которых оценен в 3,49 млрд лет, найдены на востоке Пилбары (Австралия), хотя биогенность их происхождения была поставлена под сомнение. О существовании жизни в раннем архее свидетельствуют также строматолиты того же периода.

Возникновению первых клеток должно было предшествовать накопление органических веществ в среде и появление определенной формы пребиотического метаболизма. Протоклетки содержали как минимум два обязательных элемента: наследственную информацию в виде молекул, способных к саморепликации, и определенного рода оболочки, которая ограждала внутреннее содержимое первых клеток от окружающей среды.

Наиболее вероятным кандидатом на роль саморепликативных молекул является РНК, поскольку она может одновременно выступать и носителем наследственной информации, и катализатором; кроме того, РНК, в отличие от ДНК, самодостаточна для осуществления биосинтеза белков.

Подробнее о клетке вы можете узнать из видео:

Без клетки нет жизни, клетка — это наша жизнь. Поэтому если узнавать больше о клетке, то можно объяснить, например, действие многих компонентов на нашу жизнь и самочувствие

Изучайте строение клетки и особенно важно изучать клетку будущим врачам

Строение электронных оболочек

Клеточная теория

Химический состав клетки

Генетический код клетки

Сравнение растительной и животной клетки

Митоз, мейоз и амитоз

Вакуоль — Особенности строения и функции вакуоля

Вакуоль — это центральный компонент, входящий в живую клетку и выполняющий некоторые жизненно необходимые функции. Ее строение отличается от других структур клетки, внутри вакуоли имеется свободное пространство и ее мембрана имеет проницаемую структуру.

Внутри вакуоль заполнена определенным водным раствором (так называемый клеточный сок), содержащий необходимые питательные вещества или продукты жизнедеятельности, такие как пигменты, которые окрашивают в разные цвета ягоды, цветы и другие органы растений, минеральные соли, различные сахара или отходы жизнедеятельности.

Разновидности

Данные органоиды относятся к одномембранным структурам клеток. Некоторые структуры постоянны, а другие появляются для каких-либо функций. Возникают они в следствие распространения пузырьков аппарата Гольджи и эндоплазматической сети.

Существует три вида органелл:

  1. пищеварительные — это непостоянные компоненты, возникающие тогда, когда одноклеточные животные (или те организмы которые питаются с помощью фагоцитоза или пиноцитоза) захватывают пищу. Они заглатывают, переваривают пищу и усваивают питательные вещества. Этот органоид можно сравнить с желудком человека, он точно также переваривает захваченные микробы или водоросли;
  2. сократительные представляет собой сеть каналов и выполняет функцию поглощения необходимой жидкости и выведения ненужной воды. Некоторые ученые предполагают, что эта органелла участвует в дыхании;
  3. в клетке растений — это небольшие одномембранные структуры, заполненные клеточным соком. В молодых растительных клетках их может быть более трех штук. Основная роль вакуоли в растительной клетки — это запас питательных веществ и выведение ненужных и вредных компонентов наружу.
READ  Половое и бесполое размножение, основные их виды и формы

Смотря, на строение и устройство они могут запасать питательные вещества, растворять их или удалять из клетки.

Основные функции

Функции вакуоли разнообразны:

В некоторых растительных органоидах откладываются остатки жизнедеятельности, после из них образуются вещества, которые способны выделять фермент. Вот эти вещества отпугивают животных, которые питаются травой (они имеют горький или вяжущий привкус). Ярким примером служит растение одуванчик или молочай, если мы оторвем листик, то увидим белое молочко — это и есть содержимое вакуолей.
С помощью полупроницательной мембраны она может поглощать в себя воду, в результате этого повышается внутреннее давление в клетке

Это очень важно во время роста и для водного баланса растения.
В некоторых вакуолях находятся пигменты, которые собственно и окрашивают цветы, плоды и листья в разноцветные цвета. Яркая расцветка для цветов очень важна, так как насекомые в первую очередь опыляют яркие и большие цветы.
В растениях эти компоненты участвуют в аутолизе — это значит, что клетки занимаются самоперевариванием.
Некоторые из этих компонентов выполняют функцию определенных резервуаров, которые запасают необходимые питательные вещества

Такие, как сахароза, различные белки, органические кислоты, минеральные соли и многие другие вещества.

Итак, мы выяснили, что основные функции — это хранение необходимых питательных веществ, секреция, аутолиз и выделение. Они находятся не только в растительных, но и в животных клетках. Различают постоянные и непостоянные вакуоли.

Строение животной клетки

Сложноорганизованный животный организм состоит из большого количества тканей. Форма и назначение клетки зависит от вида ткани, в состав которой она входит. Несмотря на их разнообразие, можно обозначить общие свойства в клеточном строении:

  • мембрана состоит из двух слоёв, которые отделяют содержимое от внешней среды. По своей структуре она эластична, поэтому клетки могут иметь разнообразную форму;
  • цитоплазма находится внутри клеточной мембраны. Это вязкая жидкость, которая постоянно двигается;

За счёт движения цитоплазмы внутри клетки протекают различные химические процессы и обмен веществ.

  • ядро – имеет большие размеры, по сравнению с растениями. Располагается в центре, внутри него находится ядерный сок, ядрышко и хромосомы;
  • митохондрии состоят из множества складок – крист;
  • эндоплазматическая сеть имеет множество каналов, по ним питательные вещества поступают в аппарат Гольджи;
  • комплекс трубочек, именуемый аппаратом Гольджи, накапливает питательные вещества;
  • лизосомы регулируют количество углеродов и других питательных веществ;
  • рибосомы расположены вокруг эндоплазматической сети. Их наличие делает сеть шероховатой, гладкая поверхность ЭПС свидетельствует об отсутствии рибосом;
  • центриоли – особые микротрубочки, которые отсутствуют у растений.

Рис. 1. Строение животной клетки.

Учёные открыли наличие центриолей недавно. Так как увидеть и изучить их можно только с помощью электронного микроскопа.

Строение клетки растения

В природе существуют как одноклеточные растения, так и многоклеточные. Например, в подводном мире можно встретить одноклеточные водоросли, которые имеют все функции присущие живому организму.

Многоклеточная особь – это не просто набор клеток, а единый организм, способный образовывать различные ткани, органы, которые взаимодействуют друг с другом.

Строение растительной клетки у всех растений одинаковое и состоит из одних и тех же компонентов. Её состав следующий:

  • оболочка (пластинка, межклетник, плазмодесмы и плазмолеммы, тонопласт);
  • вакуоли;
  • цитоплазма (митохондрии; хлоропласты и другие органоиды);
  • ядро (ядерная оболочка, ядрышко, хроматин).

Рис. 1. Строение клетки растения.

В отличие от животной, растительная клетка имеет особую целлюлозную оболочку, вакуоль и пластиды.

Изучение строения и функций растительной клетки показало, что:

  • самой значительной частью в организме является ядро, которое отвечает за все происходящие процессы. Оно содержит наследственную информацию, которая передаётся из поколения в поколение. От других органоидов отделяет ядро ядерная оболочка;
  • бесцветное вязкое вещество, которое наполняет клетку, называется цитоплазмой. Именно в ней находятся все органоиды;
  • под клеточной стенкой находится мембрана (тонопласт), которая отвечает за обмен веществ. Это тоненькая плёнка, отделяющая оболочку от цитоплазмы;
  • клеточная стенка достаточно прочная, так как в её состав входит целлюлоза. Поэтому функциями стенки является защита и придача формы;
  • маленькими составными компонентами являются пластиды.

    Они могут быть цветными или бесцветными. Так, например, хлоропласты имеют зелёный цвет, именно в них происходит процесс фотосинтеза;

  • внутренняя полость, заполненная соком, называется вакуолью. Размер её зависит от возраста организма: чем он старше, тем больше вакуоль. В состав сока входит водный раствор минеральных солей и органических веществ. Он содержит различные сахара, ферменты, минеральные кислоты и соли, белки и пигменты;

Рис. 2. Изменения размера вакуоли при росте растения.

  • митохондрии способны передвигаться вместе с цитоплазмой, их основная роль – обмен веществ. Именно здесь происходит процесс дыхания и образования АТФ;
  • аппарат Гольджи может иметь различные формы (диски, палочки, зёрнышки). Его роль – накопление и выведение ненужных веществ;
  • рибосомы синтезируют белок. Находятся они в цитоплазме, ядре, митохондриях, пластидах.

Клеточное строение растений учёные открыли ещё в XVII веке. Клетки апельсиновой мякоти видны невооружённым глазом, но чаще всего рассмотреть растительный организм можно под микроскопом.

Рис. 3. Строение аппарата Гольджи.

Дифференцировка клеток многоклеточного организма

Многоклеточные организмы состоят из клеток, которые в той или иной степени отличаются по строению и функциям, например, у взрослого человека около 230 различных типов клеток. Все они являются потомками одной клетки — зиготы (в случае полового размножения) — и приобретают различия в результате процесса дифференцировки.

Дифференцировка в подавляющем большинстве случаев не сопровождается изменением наследственной информации клетки, а обеспечивается лишь путем регуляции активности генов, специфический характер экспрессии генов наследуется во время деления материнской клетки обычно благодаря эпигенетическим механизмам. Однако есть исключения: например, при образовании клеток специфической иммунной системы позвоночных происходит перестройка некоторых генов, эритроциты млекопитающих полностью теряют всю наследственную информацию, а половые клетки — её половину.

Различия между клетками на первых этапах эмбрионального развития появляются, во-первых, вследствие неоднородности цитоплазмы оплодотворенной яйцеклетки, из-за чего во время процесса дробления образуются клетки, различающиеся по содержанию определенных белков и РНК; во-вторых, важную роль играет микроокружение клетки — её контакты с другими клетками и средой.

Функции

Вакуоли в растительных клетках формируют внутреннюю водную среду, с их помощью осуществляется водно-солевой обмен. Участвуют в активном транспорте и накоплении в вакуолях некоторых ионов. Другая важнейшая роль вакуолей состоит в поддержании тургорного давления внутриклеточной жидкости в клетке. К тому же, вакуоли накапливают запасные вещества и участвуют в «захоронении» отбросов (конечных продуктов метаболизма). Иногда вакуоли разрушают токсичные или ненужные в клетке вещества. Обычно это выполняется специальными небольшими вакуолями, содержащими соответствующие ферменты. Такие вакуоли получили название лизосомных.

READ  Моря и океаны, которые омывают россию

Биосинтез белков на рибосомах

Трансляция или синтез белков на рибосомах с матрицы иРНК – конечный этап преобразования генетической информации в клетках. Во время трансляции информация, закодированная в нуклеиновых кислотах, переходит в белковые молекулы со строгой последовательностью аминокислот.

Трансляция – весьма непростой этап (в сравнении с репликацией и транскрипцией). Для проведения трансляции в процесс включаются все виды РНК, аминокислот, множество ферментов, которые могут исправлять погрешности друг друга. Самые важные участники трансляции – это рибосомы.

После транскрипции, новообразованная молекула иРНК, выходит из ядра в цитоплазму. Здесь после нескольких преобразований она соединяется с рибосомой. При этом аминокислоты приводятся в действие после взаимодействия с энергетическим субстратом – молекулой АТФ.

Аминокислоты и иРНК имеют разный химический состав и без постороннего участия не могут взаимодействовать между собой. Для преодоления этой несовместимости существует транспортная РНК. Под действием ферментов аминокислоты соединяются с тРНК. В таком виде они переносятся на рибосому и тРНК, с определенной аминокислотой, прикрепляется на иРНК в предназначенном месте. Далее рибосомальные ферменты формируют пептидную связь между присоединенной аминокислотой и строящимся полипептидом. После рибосома перемещается по цепи информационной РНК, оставляя участок для прикрепления следующей аминокислоты.

Рост полипептида идет до того момента, пока рибосома не встретит «стоп-кодон», который сигнализирует об окончании синтеза. Для освобождения новосинтезированного пептида от рибосомы включаются факторы терминации, окончательно завершающие биосинтез. К последней аминокислоте прикрепляется молекула воды, а рибосома распадается на две субъединицы.

Когда рибосома продвигается дальше по иРНК, она освобождает начальный отрезок цепи. К нему снова может присоединиться рибосома, которая начнет новый синтез. Таким образом, используя одну матрицу для биосинтеза, рибосомы создают одномоментно множество копий белка.

Состав вакуоли

Часто основной состав органоида — это раствор необходимых веществ, то есть клеточный сок.

Несмотря на различия животных и растительных организмов, их клеточный сок представлен схожими веществами.

  1. Вода (например, в клетках кактуса).
  2. Минеральные соли: хлориды, нитраты, фосфаты (полифосфаты у фотосинтезирующих бактерий), нитраты.
  3. Углеводы: моносахариды, дисахариды, крахмал (в клетках клубней картофеля), гликоген (у животных).
  4. Жиры (например, белый жир подкожной жировой клетчатки у человека), поли-β-оксимасляная кислота (у некоторых бактерий).
  5. Красители: меланин (в коже человека), танин и антоцианы (у растений).
  6. Заживляющие вещества, заделывающие рану в случае повреждения (например, латекс в клеточной паренхиме коры гевеи).
  7. Газы, накапливаемые для повышения плавучести и полезного использования. У эвглены зелёной, биология которой двойственна (животное в темноте и растение на свету), накапливается и расходуется переменно углекислый газ или кислород.

Цитоплазма

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды. На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено.

Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек, служащих внутриклеточными «дорогами», и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Вывод

Вакуоль встречается как у животных и растений. Ее присутствие отмечается в составе бактерий, грибов. В зависимости от места расположения видоизменяется состав органеллы и перечень ее функций.

Вакуолями
называются крупные мембранные пузырьки или полости в цитоплазме, заполненные преимущественно водным содержимым. Они образуются из пузыревидных расширений эндоплазматического ретикулума (ЭР) или из пузырьков комплекса Гольджи (КГ). В меристематических клетках растений возникает много небольших вакуолей из пузырьковидных расширений ЭР. Увеличиваясь, они сливаются в центральную вакуоль, которая занимает большую часть объема клетки (до 70-90 %) и может быть пронизана тяжами цитоплазмы. Окружающая ее мембрана — тонопласт — имеет толщину мембраны ЭР (около 6 нм) в отличие от более толстой, более плотной и менее проницаемой плазмалеммы.

Содержимое вакуоли составляет клеточный сок. Он представляет собой водный раствор различных неорганических и органических веществ. Большинство из них относится к группе продуктов метаболизма протопласта, которые могут появляться и исчезать в различные периоды жизни клетки. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растения, органа, ткани и состояния клетки. В клеточном соке содержатся соли
, сахара
(прежде всего сахароза, глюкоза, фруктоза), органические кислоты
(яблочная, лимонная, щавелевая, уксусная и др.), аминокислоты
, белки
. Эти вещества являются промежуточными продуктами метаболизма, временно выведенными из обмена и изолированными тонопластом. Они являются запасными веществами клетки
. Помимо запасных веществ, которые могут вторично использоваться в обмене веществ, клеточный сок содержит фенолы
, танины
(дубильные вещества), алкалоиды
, которые выводятся из обмена в вакуоль и таким путем изолируются от цитоплазмы.

Танины
особенно часто встречаются в клеточном соке (а также в цитоплазме и оболочках) клеток листьев, коры, древесины, незрелых плодов и семенных оболочек. Алкалоиды
присутствуют, например, в семенах кофе (кофеин), плодах мака (морфин) и белены (атропин), стеблях и листьях люпина и др. Считается, что танины с их вяжущим вкусом, алкалоиды и токсичные полифенолы выполняют защитную функцию, так как отпугивают травоядных животных и предотвращают поедание этих растений.

В вакуолях также часто накапливаются конечные продукты жизнедеятельности клеток
.

В клеточном соке многих растений содержатся пигменты которые придают клеточному соку пурпурный, красный, желтый, синий или фиолетовый цвет. Эти пигменты главным образом и определяют окраску лепестков цветков (например, роз, георгинов, фиалок, примулы и др.), плодов, почек и листьев, а также окрашивают корнеплоды некоторых растений (например, свеклы).

Клеточный сок некоторых растений содержит физиологически активные вещества
фитогормоны
(регуляторы роста), фитонциды
, ферменты
. В последнем случае вакуоли действуют, как лизосомы. После гибели клетки ферменты, высвобождаясь из вакуолей, вызывают автолиз клетки.

Вакуоли играют главную роль в поглощении воды растительными клетками. Вода путем осмоса через тонопласт поступает в вакуоль, клеточный сок которой является более концентрированным, чем цитоплазма, и оказывает давление на цитоплазму, а тем самым и на оболочку клетки. В результате в клетке развивается тургорное давление, которое поддерживает относительную жесткость растительных клеток, а также обусловливает растяжение клеток во время их роста. В запасающих тканях растений вместо одной центральной вакуоли часто бывает несколько вакуолей, в которых скапливаются запасные питательные вещества, как, например, жировые вакуоли (содержащие растительные масла) или белковые (алейроновые) вакуоли.

Комментировать
0
1
Комментариев нет, будьте первым кто его оставит

;) :| :x :twisted: :sad: :roll: :oops: :o :mrgreen: :idea: :evil: :cry: :cool: :arrow: :P :D :???: :?: :-) :!: 8O

Это интересно