Цитоскелет

Цитоскелет

Цитоскелет
СОДЕРЖАНИЕ
0
1
02 июня 2020

Пластинчатый комплекс Гольджи

В
1898 г. итальянский ученый Гольджи, применив
метод импрегнации азотнокислым серебром,
обнаружил в нервных клетках спинномозгового
узла структуры, состоящие из пластинок
и пузырьков. Этo
и есть пластинчатый комплекс, носивший
долгое время имя Гольджи.

Серьезный вклад
в понимание значения пластинчатого
комплекса внес советский ученый цитолог
Д.Н. Насонов (1930), установивший существенную
роль этой органеллы в процессах секреции.

Комплекс
Гольджи (пластинчатый комплекс, аппарат
Гольджи) –
одномемранный
органоид общего значенияклетки,
участвующий в окончательном формировании
продуктов ее жизнедеятельности (секретов,
коллагена, гликогена, липидов и др.), а
также в синтезе гликопротеидов.

Строение
пластинчатого комплекса.

Комплекс Гольджи
образован тремя компонентами:

стопкой уплощенных
цистерн (мешочков);

пузырьками;

секреторными
пузырьками (вакуолями).

Зона
скопления этих элементов называется –
диктиосомы
.
Таких зон в клетке может быть несколько
(иногда несколько десятков и даже сотен).
Комплекс Гольджи располагается около
ядра клетки, часто вблизи центриолей,
реже рассеян по всей цитоплазме.

Диктосиомы связаны
между собой каналами. Отдельная
диктоксиома чаще всего имеет чашеобразную
форму. Она имеет диаметр около 1 мкм и
содержит 4 – 8 лежащих параллельно
уплощенных цистерн, пронизанных порами.
Концы цистерн расширены. От них отщепляются
пузырьки и вакуоли, окруженные мембраной
и содержащие различные вещества.

Комплекс Гольджи
отчетливо поляризован по вертикали. В
нем выделяют две поверхности (два
полюса):

цис-поверхность

,
или незрелая поверхность, которая имеет
выпуклую форму, обращена к ЭПС (ядру) и
связана с отделяющимися от нее мелкими
транспортными пузырьками;

транс-поверхность

,
или поверхность вогнутой формы, обращена
к плазмолемме, со стороны которой от
цистерн комплекса Гольджи отделяются
вакуоли (секреторные гранулы).

Функции Комплекса
Гольджи:

синтез
гликопротеинов и полисахаридов;

модификация
первичного секрета, его конденсация и
упаковка в мембранные пузырьки
(формирование секреторных гранул);

процессинг
молекул (фосфорилирование, сульфатирование,
ацилирование и т. п.);

накопление
секретируемых клет­кой веществ;

образование
лизосом, пероксисом;

сборка
мембран,
обеспечивает обновление плазматической
мембраны;

сортировка
синтезированных клеткой белков у
транс-поверхности перед их окончательным
транспор­том (производится посредством
рецепторных белков, распознающих
сигнальные участки макромолекул и
направляющих их в различные пузырьки);

транспорт
веществ: из транспортных пузырьков
вещества проникают в стопку цистерн
комплекса Гольджи с цис-поверхности,
а выходят из нее в виде вакуолей с
транс-поверхности.

Из ЭПС транспортные
пузырьки, несущие продукты первичных
синтезов, присоединяются к цистернам.
В цистернах продолжается синтез
полисахаридов, образуются комплексы
белков, углеводов и липидов, иначе
говоря, приносимые макромолекулы
модифицируются. Здесь происходит синтез
полисахаридов, модификация олигосахаридов,
образование белково-углеводных комплексов
и ковалентная модификация переносимых
макромолекул.

По мере модификации
вещества переходят из одних цистерн в
другие. На боковых поверхностях цистерн
возникают выросты, куда перемещаются
вещества. Выросты отщепляются в виде
пузырьков, которые удаляются от КГ в
различных направлениях по цитоплазме.

Судьба пузырьков,
отщепляющихся от КГ, различна. Одни из
них направляются к поверхности клетки
и выводят синтезированные вещества в
межклеточный матрикс (это или продукты
метаболизма или гранулы секрета).

Таким
образом, в КГ не только завершаются
многообразные синтезы, но и происходит
разделение синтезированных продуктов,
сортировка в зависимости от их дальнейшего
предназначения. Такая функция КГ
называется сегрегационной.

Биогенез
пластинчатого комплекса
.
Согласно существующим предположениям
пластинчатый комплекс может возникать
различными путями:

вследствие
фрагментации (деления) его элементов;

из
мембран гранулярной ЭПС;

из
микропузырьков, образующихся на внешней
поверхности ядерной оболочки;

может
образоваться de
novo
(новообразование).

Строение и функции рибосом необходимо знать любому современному человеку. Функционирование клетки живого организма – сложный процесс, продолжающийся в течение жизни организма.

Рибосомы представляют собой органоиды клетки, участвующие в сложном клеточном механизме трансляции генетического кода в цепи аминокислот. Длинные цепи аминокислот соединяются между собой, образуя белки, выполняющие различные функции. Схема строения рибосомы показана на рисунке ниже.

Особенности и функции вакуоли в растительных клетках

Вакуоль — это клеточная органелла, встречающаяся в ряде различных типов клеток. Она представляют собой заполненные жидкостью закрытые структуры, отделенную от цитоплазмы одной мембраной.

Вакуоли встречаются в основном в растительных клетках и грибах. Однако некоторые протисты, клетки животных и бактерии также содержат эти органеллы. Вакуоль отвечают за широкий спектр важных функций в клетке, включая хранение питательных веществ, детоксикацию и экспорт отходов.

Вакуоль в клетках растений

Вакуоль в растительной клетке окружена одной мембраной, называемой тонопластом. Она образуется, когда везикулы, высвобождаемые эндоплазматическим ретикулумом и комплексом Гольджи, сливаются вместе.

Недавно развившиеся растительные клетки обычно содержат несколько небольших вакуолей. По мере созревания клетки крупная центральная вакуоль образуется из слияния меньших вакуолей. Центральная вакуоль может занимать до 90% объема клетки.

Функция вакуоли

Вакуоли в клетках растений выполняют ряд важных функций, включая:

  • Тургорное давление — сила, воздействующая на клеточную стенку, так как содержимое клетки подталкивает плазматическую мембрану к стенке клетки. Вода, заполняющая центральную вакуолью, оказывает давление на клеточную стенку, чтобы помочь растительным структурам оставаться жесткими и прямыми.
  • Рост — центральные вакуоли помогают в удлинении клеток, поглощая воду и оказывают давление тургора на клеточную стенку. Росту способствует высвобождение определенных белков, которые снижают жесткость клеточной стенки.
  • Хранение — вакуоли хранят важные минералы, воду, питательные вещества, ионы, отходы, небольшие молекулы, ферменты и растительные пигменты.
  • Деградация молекул — внутренняя кислая среда вакуолей способствует деградации более крупных молекул, направляемых в вакуоль для разрушения. Тонопласт помогает создать эту кислую среду путем переноса ионов водорода из цитоплазмы в вакуоль. Среда с низким рН активирует ферменты, которые разрушают биологические полимеры.
  • Детоксикация — вакуоли удаляют потенциально токсичные вещества из цитозоля, такие как избыточные тяжелые металлы и гербициды.
  • Защита — некоторые вакуоли хранят и выделяют химические вещества, которые являются ядовитыми или неприятными для защиты растений от животных.
  • Прорастание семян — вакуоли являются источником питательных веществ для семян во время прорастания. Они хранят важные углеводы, белки и жиры, необходимые для роста.

Вакуоли клеток растений функционируют аналогично лизосомам в клетках животных. Лизосомы являются мембранными мешочками ферментов, которые переваривают клеточные макромолекулы.

Вакуоли и лизосомы также участвуют в запрограммированной гибели клеток, которая в растениях происходит посредством процесса, называемого автолизом. Автолиз растений — это естественный процесс, при котором растительная клетка разрушается своими ферментами.

В упорядоченной серии событий вакуумирующий тонопласт разрывается, высвобождая свое содержимого в цитоплазму клетки. Пищеварительные ферменты из вакуоли затем разрушают всю клетку.

Осмотическое давление в клетке

Осмотическое давление — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану (осмос). Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.

Мера градиента осмотического давления, то есть различия водного потенциала двух растворов, разделённых полупроницаемой мембраной, называется тоничностью. Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое — гипотоническим.

Тургор тканей — напряжённое состояние оболочек живых клеток. Тургорное давление — внутреннее давление, которое развивается в растительной клетке, когда в неё в результате осмоса входит вода и цитоплазма прижимается к клеточной стенке; это давление препятствует дальнейшему проникновению воды в клетку.

Тургор обуславливается тремя факторами: внутренним осмотическим давлением клетки, которое вызывает напряжение клеточной оболочки, внешним осмотическим давлением, а также упругостью клеточной оболочки.

Рисунок 11. Взаимодействие эритроцитов и растительной клетки с растворами.

Основные компоненты прокариотической клетки

Основными компонентами прокариотической клетки являются:

  • Клеточная стенка, которая окружает клетку извне, защищает её, придаёт устойчивую форму, предотвращающую от осмотического разрушения. У бактерий клеточная стенка состоит из муреина, построенного из длинных полисахаридных цепей, соединенных между собой короткими пептидными перемычками. Клеточная стенка архей не содержит муреина, а построена в основном из разнообразных белков и полисахаридов.
  • Жгутики — органеллы движения некоторых бактерий. Бактериальный жгутик построен значительно проще эукариотического, и он в 10 раз тоньше, внешне не покрыт плазматической мембраной и состоит из одинаковых молекул белков, которые образуют цилиндр. В мембране жгутик закреплен при помощи базального тела.
  • Плазматическая и внутренние мембраны. Общий принцип устройства клеточных мембран не отличается от эукариот, однако химическом составе мембраны есть немало различий, в частности, в мембранах прокариот отсутствуют молекулы холестерина и некоторых липидов, присущих мембранам эукариот. Большинство прокариотических клеток (в отличие от эукариотических) не имеют внутренних мембран, которые разделяют цитоплазму на отделы (компартменты). Только у некоторых фотосинтетических и аэробных бактерий плазмалемма образует вгибание внутрь клетки, что выполняет соответствующие метаболические функции.
  • Нуклеоид — не ограниченный мембранами участок цитоплазмы, в котором расположена кольцевая молекула ДНК — «бактериальная хромосома», где хранится весь генетический материал клетки.
  • Плазмиды — небольшие дополнительные кольцевые молекулы ДНК, несущие обычно всего несколько генов. Плазмиды, в отличие от бактериальной хромосомы, не являются обязательным компонентом клетки. Обычно они придают бактерии определенные полезные для неё свойства, такие как устойчивость к антибиотикам, способность усваивать из среды определенные энергетические субстраты, способность инициировать половой процесс и тд.
  • Рибосомы прокариот, как и у всех других живых организмов, отвечают за осуществление процесса трансляции (одного из этапов биосинтеза белка). Однако бактериальные рибосомы несколько меньше, чем эукариотические и имеют другой состав белков и РНК. Из-за этого бактерии, в отличие от эукариот, чувствительны к таким антибиотикам, как эритромицин и тетрациклин, которые избирательно действуют на прокариотические рибосомы.
  • Споры (эндоспоры) — окруженные плотной оболочкой структуры, содержащие ДНК бактерии и обеспечивающее выживание в неблагоприятных условиях. К образованию спор способны лишь некоторые виды прокариот, например в частности возбудитель столбняка, возбудитель ботулизма и возбудитель сибирской язвы. Для образования эндоспоры клетка реплицирует свою ДНК и окружает копию плотной оболочкой, из созданной структуры удаляется избыток воды, и в ней замедляется метаболизм. Споры бактерий могут выдерживать довольно жесткие условия среды, такие как длительное высушивание, кипячение, коротковолновое облучение.

Органеллы свойственные всем типам клеток

Строение растительной и животной клетки

Ядро – один из важных компонентов клетки, содержит генетическую информацию и обеспечивает передачу ее потомкам. Окружено двойной мембраной, что изолирует его от цитоплазмы.

Цитоплазма – вязкая прозрачная среда, заполняющая клетку. В цитоплазме размещены все органоиды. Цитоплазма состоит из системы микротрубочек, которая обеспечивает четкое перемещение всех органелл. А также контролирует транспорт синтезированных веществ.

Клеточная мембрана – оболочка, которая отделяет клетку от внешней среды, обеспечивает транспорт веществ в клетку и выведение продуктов синтеза или жизнедеятельности.

Эндоплазматическая сеть – мембранная органелла, состоит из цистерн и канальцев, на поверхности которых происходит синтез рибосом (гранулярная ЭПС). Места, где нет рибосом, образуют гладкий эндоплазматический ретикулум. Гранулярная и агранулярная сеть не отграничены, а переходят друг в друга и соединяются с оболочкой ядра.

Комплекс Гольджи – стопка цистерн, сплюснутых в центре и расширенных на периферии. Предназначен для завершения синтеза белков и дальнейшего транспорта их из клетки, вместе с ЭПС образует лизосомы.

Митохондрии – двухмембранные органоиды, внутренняя мембрана формирует выступы внутрь клетки – кристы. Отвечают за синтез АТФ, энергетический обмен. Выполняет дыхательную функцию (поглощая кислород и выделяя СО2).

Рибосомы – отвечают за синтез белка, в их структуре выделяют малую и большую субъединицы.

Лизосомы – осуществляют внутриклеточное переваривание, за счет содержания гидролитических ферментов. Расщепляют захваченные чужеродные вещества.

Как в растительных, так и животных клетках есть, помимо органелл, непостоянные структуры — включения. Они появляются при повышении обменных процессов в клетке. Они выполняют питательную функцию и содержат:

  • Зерна крахмала в растениях, и гликоген — в животных;
  • белки;
  • липиды – высокоэнергетические соединения, обладают большей ценностью, чем углеводы и белки.

Есть включения, не играющие роли в энергетическом обмене, они содержат продукты жизнедеятельности клетки. В железистых клетках животных включения накапливают секрет.

Функция цитоскелета

Цитоскелет распространяется по всей цитоплазме клетки и выполняет ряд важных функций:

  • Придает клеткам форму и обеспечивает структурную поддержку.
  • Удерживает клеточные органеллы рядом.
  • Помогает в образовании вакуолей.
  • Цитоскелет не является статической структурой, и способен разбирать и собирать свои внутренние части, чтобы обеспечить внутреннюю и общую подвижность клеток. Типы внутриклеточного движения, поддерживаемые цитоскелетом, включают транспортировку везикул в клетку и из нее, манипуляцию хромосомами во время митоза или мейоза и миграцию органелл. Цитоскелет делает возможной миграцию клеток, поскольку мобильность клеток необходима для создания и восстановления тканей, цитокинеза (деление цитоплазмы) при образовании дочерних клеток и в ответах иммунных клеток на микробы.
  • Цитоскелет помогает в транспортировке сигналов связи между клетками.
  • Он образует клеточные придаточные выступы, такие как реснички и жгутики (в некоторых клетках).

Органеллы

Пластиды

Основная статья: Пластиды

Пластиды — органеллы растительной клетки, состоящие из белковой стромы, окружённой двумя липопротеидными мембранами. Внутренняя из них образует внутрь выросты (тилакоиды, или ламеллы).

Пластиды, как и митохондрии, являются самовоспроизводящимися органеллами и имеют собственный геном — пластом, а также рибосомы.

У высших растений все пластиды происходят от общего предшественника — пропластид, которые развиваются из двумембранных инициальных частиц.

Пластиды присущи исключительно растениям. Различают три основных типа пластид:

  • Лейкопласты. Эти пластиды не содержат никаких пигментов, внутренняя мембранная система, хотя и присутствует, но развита слабо. Разделяют амилопласты, запасающие крахмал, протеинопласты, содержащие белки, элайопласты (или олеопласты), запасающие жиры. Этиопласты — это бесцветные пластиды растений, которые выращивали без освещения. При наличии света они легко превращаются в хлоропласты.
  • Хромопласты — пластиды жёлто-оранжевого цвета, обусловленного наличием в них пигментов каротиноидов: каротина, ксантофилла, лютеина, зеаксантина и др. Образуются из хлоропластов при разрушении в них хлорофилла и внутренних мембран. Кроме того, хромопласты мельче хлоропластов по размерам. Каротиноиды присутствуют в хромопластах в виде кристаллов или растворёнными в каплях жира (такие капли называют пластоглобулами). Биологическая роль хромопластов до сих пор неясна.

Ультраструктура хлоропласта: 1. наружная мембрана 2. межмембранное пространство 3. внутренняя мембрана (1+2+3: оболочка) 4. строма (жидкость) 5. тилакоид с просветом (люменом) внутри 6. мембрана тилакоида 7. грана (стопка тилакоидов) 8. тилакоид (ламела) 9. зерно крахмала 10. рибосома 11. пластидная ДНК 12. пластоглобула (капля жира)

Хлоропласты — пластиды в виде двояковыпуклой линзы, окружённые оболочкой из двух липопротеидных мембран. Внутренняя из них образует длинные выросты в белковую строму — тилакоиды стромы и более мелкие, расположенные стопками тилакоиды гран, соединённые между собой тилакоидами стромы. С белковым слоем мембран тилакоидов связаны пигменты: хлорофилл и каротиноиды. В хлоропластах осуществляется фотосинтез. Первичный крахмал, синтезированный хлоропластами, откладывается в строме между тилакоидами.

Гигантские хлоропласты водорослей, присутствующие в клетке в единственном числе, называются хроматофорами. Их форма может быть очень разнообразной.

Вакуоли

Основная статья: Вакуоль

Вакуоль — полость в клетке, заполненная клеточным соком и окружённая мембраной — тонопластом. Вещества, содержащиеся в клеточном соке, определяют величину осмотического давления и тургор клеточной оболочки.

Вакуоли образуются из провакуолей — небольших мембранных пузырьков, отшнуровывающихся от ЭПР и комплекса Гольджи. Потом пузырьки сливаются, образуя более крупные вакуоли. Только у старых вакуолей все вакуоли могут сливаться в одну гигантскую центральную вакуоль, обычно же клетка, помимо центральной вакуоли, содержит мелкие вакуоли, наполненные запасными веществами и продуктами обмена.

Вакуоли выполняют в клетке следующие основные функции:

  • создание тургора;
  • запасание необходимых веществ;
  • отложение веществ, вредных для клетки;
  • ферментативное расщепление органических соединений (это сближает вакуоли с лизосомами).

Эволюция цитоскелета

Родственны между собой элементы цитоскелета были найдены у подавляющего большинства представителей всех трех доменов живых организмов: эукариот, бактерий и архей. Это свидетельствует о том, что белки цитоскелета возникли еще до выделения этих трех ветвей, каким бы путем оно не происходило.

Белок FtsZ, с которого позже возник тубулин, вероятно, эволюционно очень древним. Он содержит очень мало аминокислот аргинина, лизина, фенилаланина, тирозина и гистидина и практически не содержит триптофана. Поскольку считается, что кодоны этих аминокислот были добавлены в генетический код последними, вполне вероятно, что какая-то форма FtsZ возникла еще до окончательного установления генетического кода и уже тогда служила для осуществления цитокинеза. Белки гомологи тубулина образуют отдельную семью ГТФаз, и не имеют никаких близких родственников. Зато MreB более «молодой» с эволюционной точки зрения белок, он, вместе с другими актиноподибнимы белками и актиний, принадлежит к семье АТФаз, которая также включает ферменты гексокиназы и шаперон hsp70. Причем первыми из этой семьи, больше всего, возникли гексокиназы.

Сравнение последовательностей аминокислот в белках FtsZ различных видов бактерий и архей между собой и с эукариотическими тубулина, а также MreB между собой и с эукариотическими актина выявило интересную закономерность:

  • Белки FtsZ очень далеких друг от друга видов прокариот, таких как бактерии Escherichia coli, Bacillus subtilis, Mycoplasma pulmonis и Архебактерии рода Halobacterium имели высокую степень идентичности в аминокислотной последовательности (от 46 до 53%); аналогичное справедливо и для белка MreB.
  • Эукариотические тубулина и актин даже еще более консервативные (напирклад между тубулина человека и дрожжей существует 75% идентичности, в то время как актин любых видов эукариот, обычно отличаются не более чем на 10%);
  • Несмотря на большую консервативность белков цитоскелета в пределах групп эукариот и прокариот, при сравнении этих белков между группами, оказывается, что идентичность настолько мала, что ее почти невозможно обнаружить обычными методами (менее 15%). Причем гомология наиболее выражена в ГТФ- и АТФ-связывающих доменах.

Для объяснения этой «загадки» была выдвинута гипотеза о том, что такая резкая дивергенция эукариотических белков цитоскелета от прокариотических состоялась вследствие изменения их роли в клетке. FtsZ перестал обеспечивать прохождение цитокинеза и стал механической опорой клетки, а позже взял на себя и другие функции, в то время как MreB, взял на себя роль осуществления деления клетки и фагоцитоза.

Чрезвычайно высокий уровень косервативности актина и тубулина в клетках эукариот объясняется тем, что эти белки взаимодействуют с огромным количеством других: регуляторных, вспомогательных, моторных и др. Именно актин является «чемпионом» среди эукариотических белков по количеству белков-партнеров, поэтому замена любой аминокислоты может привести к нарушению этих взаимодействий и иметь катастрофические последствия.

Третий тип элементов цитоскелета — промежуточные филаменты, эволюционировали другим путем. Они имеющиеся фактически только у эукариот, и хотя их гомолог кресцентин и был обнаружен у одного вида бактерий, скорее всего, эти бактерии получили его в результате горизонтального переноса генов от эукариот. Белки промежуточных филаментов, в отличие от актина и тубулина, не отличаются особой консервативностью.

Структура цитоскелета

Цитоскелет состоит по меньшей мере из трех различных типов волокон: микротрубочек, микрофиламентов и промежуточных волокон. Эти волокна отличаются своим размером, причем микротрубочки являются самыми толстыми, а микроволокна являются самыми тонкими.

Протеиновые волокна

  • Микротрубочки представляют собой полые стержни, функционирующие прежде всего для поддержки или формирования клетки и выступают в роли «маршрутов», вдоль которых могут перемещаться органеллы. Микротрубочки обычно встречаются во всех эукариотических клетках. Они различаются по длине и составляют около 25 нм (нанометров) в диаметре.
  • Микрофиламенты или актиновые нити представляют собой тонкие твердые стержни, которые активны при мышечном сокращении. Они особенно распространены в мышечных клетках. Подобно микротрубочкам, они обычно встречаются во всех эукариотических клетках. Микрофиламенты состоят в основном из сократительного белкового актина и имеют диаметр до 8 нм.
  • Промежуточные нити могут быть многочисленными во многих клетках и обеспечивать поддержку микрофиламентов и микротрубочек, удерживая их на месте. Эти нити образуют кератины, обнаруженные в эпителиальных клетках и нейрофиламентах в нейронах. Они имеют диаметр около 10 нм.

Моторные белки

Ряд моторных белков содержится в цитоскелете. Как следует из их названия, эти белки активно перемещают волокна цитоскелета. В результате молекулы и органеллы транспортируются вокруг клетки. Моторные белки питаются от АТФ, который образуется посредством клеточное дыхания. Существует три типа моторных белков, участвующих в движении клеток:

  • Кинезины двигаются вдоль микротрубочек, несущих сотовые компоненты по пути. Они обычно используются для вытягивания органелл в клеточную мембрану.
  • Динеины похожи на кинезины и используются для вытягивания клеточных компонентов внутри ядра. Они также обеспечивают скольжение микротрубочек, которое наблюдается при движении ресничек и жгутиков.
  • Миозины взаимодействуют с актином для выполнения мышечных сокращений. Они также участвуют в цитокинезе, эндоцитозе и экзоцитозе.

Строение

Рассмотрим строение данной структуры, далее узнаем, какие функции выполняет цитоскелет.

Цитоскелет образовался за счет белков. В его структуре выделяется несколько систем, название которых происходит от основных структурных элементов, либо от основных белков, которые входят в состав данных систем.

Поскольку цитоскелет — это структура, то в ней выделяют три основные составляющие. Они играют важную роль в жизни и движении клеток.

Цитоскелет состоит из микротрубочек, промежуточных филаментов и микрофиламентов. Последние иначе называют актиновыми филаментами. Все они по своей природе нестабильны: постоянно собираются и разбираются. Таким образом, все компоненты имеют динамическое равновесие с белками, им соответствующими.

Микротрубочки цитоскелета, представляющие собой жесткую структуру, присутствуют в цитоплазме эукариотов, а также в ее выростах, которые называются жгутиками и ресничками. Их длина может варьироваться, некоторые достигают несколько микрометров в длину. Иногда микротрубочки объединяются с помощью ручек или мостиков.

Микрофиламенты состоят из актина — белка, похожего на тот, что входит в состав мышц. В их строении в малом количестве есть и другие белки. Главное отличие актиновых филаментов от микротрубочек состоит в том, что некоторых из них нельзя увидеть в световом микроскопе. В животных клетках они объединяются в сплетение под мембраной и, таким образом, связаны с ее белками.

Микрофиламенты животных и растительных клеток также взаимодействуют с белком миозином. При этом их система имеет способность к сокращению.

Промежуточные филаменты состоят из различных белков. Данный структурный компонент достаточно не изучен. Есть вероятность, что у растений он вообще отсутствует. Также некоторые ученые считают, что промежуточные филаменты являются дополнением к микротрубочкам. Точно доказано то, что при рзрушении системы микротрубочек филаменты перестраиваются, а при обратной процедуре влияние филаментов практически не сказывается на микротрубочках.

Цитоскелет эукариот

Клетки эукариот содержат три типа так называемых филаментов. Это супрамолекулярные, протяжённые структуры, состоящие из белков одного типа, сходные с полимерами. Разница заключается в том, что в полимерах связь между мономерами ковалентная, а в филаментах связь составных единиц обеспечивается за счёт слабого нековалентного взаимодействия.

Актиновые филаменты (микрофиламенты)

Порядка 7 нм в диаметре, микрофиламенты представляют собой две цепочки из мономеров актина, закрученные спиралью. В основном они сконцентрированы у внешней мембраны клетки, так как отвечают за форму клетки и способны образовывать выступы на поверхности клетки (ламеллоподии и микроворсинки). Также они участвуют в межклеточном взаимодействии (образовании адгезивных контактов), передаче сигналов и, вместе с миозином — в мышечном сокращении. С помощью цитоплазматических миозинов по микрофиламентам может осуществляться везикулярный транспорт.

Промежуточные филаменты (нанофиламенты)

Диаметр промежуточных филаментов составляет от 8 до 12 нанометров. Они состоят из разного рода субъединиц, большинство белков промежуточных филаментов у млекопитающих является кератинами. Для нанофиламентов не характерно присутствие центра организации; они образуют пучки и сетчатые структуры в ядре и в цитоплазме клетки. Промежуточные филаменты обладают высокой эластичностью и обеспечивают устойчивость клетки к механическому и химическому стрессу.

Схема, показывающая цитоплазму, вместе с её компонентами (или органеллами), в типичной животной клетке. Органеллы: (1) Ядрышко (2) Ядро (3) рибосома (маленькие точки) (4) Везикула (5) шероховатый эндоплазматический ретикулум (ER) (6) Аппарат Гольджи (7) Цитоскелет (8) Гладкий эндоплазматический ретикулум (9) Митохондрия (10) Вакуоль (11) Цитоплазма (12) Лизосома (13) Центриоль и Центросома

Микротрубочки

Микротрубочки представляют собой полые цилиндры порядка 25 нм диаметром, стенки которых составлены из 13 протофиламентов, каждый из которых представляет линейный полимер из димера белка тубулина. Димер состоит из двух субъединиц — альфа- и бета- формы тубулина. Микротрубочки — крайне динамичные структуры, потребляющие ГТФ в процессе полимеризации. Они играют ключевую роль во
внутриклеточном транспорте (служат «рельсами», по которым перемещаются молекулярные моторы — кинезин и динеин), образуют основу аксонемы ундулиподий и веретено деления при митозе и мейозе.

Микротрубочки. Активные движения цитоскелета.

Микротрубочки также часто претерпевают подобные перемещения. Механизм этих перемещений сходен — полимеризация тубулина из цитозоля таким образом, что один из концов микротрубочки растет, тогда как другой либо не изменяется, либо там происходит разборка. Так микротрубочка путем соответствующего добавления или устранения материала может перемещаться по цитозолю.

Активные движения цитоскелета. Изменения ци-тосклетных структур могут происходить в результате как активных движений, так и перестроек, описанных выше. Во многих случаях движение микротрубочек и актиновых филаментов обусловлено сократительными белками, которые связывают филаменты или трубочки и могут перемещать их относительно друг друга. Белки миозин и динеин присутствуют в цитозоле всех клеток в сравнительно высоких концентрациях; они являются теми элементами, которые преобразуют энергию в движение в специализированных клетках (мышечных) и органеллах (ресничках). В мышечных клетках миозин образует толстые филаменты, ориентированные параллельно актиновым филаментам. Молекула миозина своей «головкой» присоединяется к актиновому филаменту и, используя энергию АТФ, смещает миозин вдоль молекулы актина.

Затем миозин отсоединяется от актина. Совокупность множества таких циклов соединения-разъединения приводит к макроскопическому сокращению мышечных волокон (гл. 4). Динеин играет аналогичную роль в перемещении микротрубочек при работе ресничек (рис. 1.1). В цитоплазме неспециализированных клеток миозин и динеин образуют не правильные волокна, а в большинстве случаев маленькие группы молекул. Даже в виде таких малых агрегатов они способны перемещать актиновые филаменты или микротрубочки.


Рис. 1.13. Немышечный миозиновый комплекс при определенной ориентации может связываться с актиновыми филаментами различной полярности и, используя энергию АТФ, смещать их относительно друг друга

Рис. 1.13 иллюстрирует этот процесс, когда к двум актиновым филаментам, поляризованным в разных направлениях, присоединены также противоположно поляризованные молекулы миозина. Головные группы миозина изгибаются к хвосту молекулы, расходуя при этом АТФ, а два актиновых филамен-та смещаются в противоположном направлении, после чего миозин отсоединяется от них. Перемещения такого рода, в ходе которых энергия АТФ преобразуется в механическую работу, могут изменять форму цитоскелета и, следовательно, клетки, а также обеспечивать транспорт связанных с цито-скелетом органелл.

Zachet_Abramova

В основании и жгутика, и рес­нички лежит базальное тельце, которое укрепляет их в цитоплазме клетки. Меха­низм движения ресничек и жгутиков оди­наков, в его основе лежит скольжение микротрубочек друг относительно друга. Сходство этих органоидов движения за­ключается также и в том, что на их работу расходуется энергия АТФ.

Различаются реснички и жгутики раз­мерами. Жгутики в несколько раз длин­нее ресничек.

Кроме того, реснички, изги­баясь волнообразно, обеспечивают клетке плавное, медленное передвижение. Жгу­тик же осуществляет вращательные дви­жения, что позволяет клетке активно пе­ремещаться.

Вопрос 4.

Назовите примеры клеточных включений.

Временные образования в клетке на­зывают клеточными включениями. К ним относятся гранулы крахмала, гли­когена или белка, мелкие капли жира, кристаллы солей.

На этой странице искали :

  • каковы функции клеточного центра
  • функции клеточного центра
  • клеточный центр функции
  • каковы функции центриолей в клетке
  • клеточный центр выполняет функции

«агрузка…

Центриоли (от лат. centrum – срединная точка, центр)представляют два перпендикулярно расположенных друг к другу цилиндра, стенки которых образованы микротрубочками и соединены системой связок.

Конец одного цилиндра (дочерняя центриоль) направлен к поверхности другого (материнская центриоль). Совокупность сближенных между собой материнской и дочерней центриолей называетя диплосомой.

Впервые центриоли были обнаружены и описаны в 1875 В. Флемингом. В интерфазных клетках центриоли часто располагаются возле комплекса Гольджи и ядра.

Ультрамикроскопическое строение центриолей было изучено только с помощью электронного микроскопа. Стенку центриолей составляют расположенные по окружности 9 триплетов микротрубочек, образующих полый цилиндр.

Системы микротрубочек центриоли можно описать формулой (9X3) + 0, подчеркивая отсутствие микротрубочек в центральной части. Ширина центриоли составляет около 0,2 мкм, длина — 0,3-0,5 мкм (однако, есть центриоли, достигающие в длину нескольких микрометров). Кроме микротрубочек в состав центриоли входят дополнительные структуры — «ручки», соединяющие триплеты.

Центриолярный цикл. Строение и активность центриолей меняются в зависимости от периода клеточного цикла.

Это позволяет говорить о центриолярном цикле. В начале периода G1 от поверхности материнской центриоли начинается рост микротрубочек, которые растут и заполняют цитоплазму. По мере роста микротрубочки теряют связь с областью центриолей и могут находиться в цитоплазме длительное время. В периоде S или G2 происходит удвоение числа центриолей.

Этот процесс заключается в том, что центриоли в диплосоме расходятся и около каждой из них происходит закладка процентриолей. В начале вблизи и перпендикулярно исходной центриоли закладываются девять одиночных микротрубочек. Затем они преобразуются в девять дуплетов, а потом в девять триплетов микротрубочек новых центриолей. Этот способ увеличения числа центриолей был назван дупликацией. Следует отметить, что удвоение числа центриолей не связано с их делением, почкованием или фрагментацией, а происходит путем образования процентриолей.

Таким образом, в результате дупликации в клетке содержатся четыре попарно связанные центриоли. В этом периоде материнская центриоль продолжает играть роль центра образования цитоплазматических микротрубочек.

Комментировать
0
1
Комментариев нет, будьте первым кто его оставит

;) :| :x :twisted: :sad: :roll: :oops: :o :mrgreen: :idea: :evil: :cry: :cool: :arrow: :P :D :???: :?: :-) :!: 8O

Это интересно